

Data protocol

HTTP and HTTPS
communication

Flexible Data Acquisition Method

Version 1.16 / Firmware Release 04.03.22

Data protocol http and https communication page II Date: 30.04.2024

Version / Changes:

Version Date Who Description, changed content

V 1.0 – 1.4 Nov 14, 2016 Bernd Ottmann Document created based on Level 0 and Level 1

V 1.5 Mar 19, 2017 Sven Meyer Chapter 2.2 added and Level 1 completed

V 1.6 Apr 27, 2017 Sven Meyer Chapter 2.2 updated, Index-Structure replace by object-based interface

V 1.7 Jul 04, 2017 Sven Meyer Chapter 3 updated
Chapter 2.2.3: Entities for parameters in http request added

V 1.8 Dec 11, 2017 Sven Meyer Representation of Comma by its entity within structured messages described.
Definition of buffer sizes in chapter 2.4.4 added.
Removed Chapter 3 – there is a specific revision history for https now
Added Appendices A and B

V 1.9 Jun 25, 2019 Sven Meyer Chapter 1.7 added
2.2.3.2.9, 2.2.3.2.12 - 2.2.3.2.20 added
Appendixes A, B.5-B.7, C, D, E added

V 1.9.1 Dec 06, 2019 Sven Meyer Appendix B.2: Misleading comment on client certificates not being imple-
mented removed.

V 1.10

Jul 08, 2020 Sven Meyer

Michael Wicher

Section 2.2.1.2 now described acknowledge by directly sending an IFF file.
Service mode key added in chapter 2.2.3.2.3.
Sections 2.2.3.2.22 to 2.2.3.2.26 added; COM.HTTP_MODE[.].SEND_IFF in-
troduced.
Appendix B.5 now includes a section on using ECC instead of RSA
System Messages concerning Fingerprint added to section 2.3.1

V 1.11 Dec 23, 2020 Sven Meyer Section 1.6 on basic authentication implementation added
Bit definitions of df_ac2 (2.2.3.2.10) changed to match the documentation of
the DFCom Communication Library (change is effective with 04.03.16 firmware
version)
Appendix B.5.3 update (Certificates and Microsoft Chromium Edge)
Appendix C update (Initial device configuration using http)
Appendix D update (Datafox Sample Web Server)
Appendix E.5 added (Reference for HTTP flags)

V 1.12 Jan 13, 2022 Sven Meyer

Michael Wicher

Sven Meyer

Section 1.7: Http-Header User-Agent added
Section 2.2.3.2.10 extended by new relay mask bits, bits are enumerated from
1
Section 2.2.3.2.18: Partial implementation of token “image”
Section 2.3.1: System message code 1037 added
Sections concerning System messages (2.3) and Encryption (2.4) separated
from protocol content
Appendix B.5.4 on securing client.key storage added.
Appendix E.5: Flags on abs_path and absoluteURI changed, bits are enumer-
ated from 1

V 1.12.1 Jun 03, 2022 Sven Meyer Section 2.2.3.2.18 df_send_file: Token <finger2> added
Appendix A.3.1.3.1 – CRC Computation Algorithm added
Appendix C.3 added
Appendix E.6 added

V 1.13 Nov 30, 2022 Sven Meyer Section 2.2.3.2.27 – Firmware update added
Section 2.3.1: List of System messages completed
Section 2.3.2: added
Appendix D: Documentation of Test-Webserver updated
Appendix E: Troubleshooting renamed to Appendix T: Troubleshooting
New Appendix E on Firmware-Update added

Data protocol http and https communication page III Date: 30.04.2024

V 1.14 Feb. 15, 2023 Sven Meyer Appendix B.6: Generate own derived certificates.
Appendix E, Section 2.3.1: Handling of CPU mode in µSVC integrated.
Section 2.3.1: System messages 3915, 3916, 4502 and 4503 added.
Appendix T.7: Use of virtual hosts to realise endpoints with different certificate
chains

V 1.14.1 May 03, 2023 Sven Meyer Section 2.3.1: System message 1039 added
Section 2.2.3.1.1: Processing of HTTP status codes 201-299 added
Appendix A.1: DFCReset mapped to HTTP protocol

V 1.15 June 6th,
2023

Sven Meyer Section 1.7: Included Response into documentation
Section 1.8: Added
Appendix F: Description of API-Level 0 moved here from section 2.1

V 1.15.1 June 29th,
2023

Sven Meyer Appendix G on distributing firmware updates added

V 1.15.2 August 30th,
2023

Sven Meyer Section 1.7.1: Header field “Data-Records-In-Device” added
Section 2.2.1.3: Not concerning IFF upload process added
Section 2.2.3.2.21 and following: Note on sort column and performance consid-
erations concerning in-device data manipulation added.
Section 2.3.1 System messages 1500 and 3006 added

V 1.16 April 30th,
2024

Sven Meyer Appendix A.3.2: File types: Transfer of display design described; IFF-Type

0xDF0A marked as obsolete.

Appendix C.2: CRC Implementation of the info telegram: CRC

function corrected

Appendix T.5: Reference to http.flags: TCP-Proxy added

© 2024 Datafox GmbH
This document is designed as a device-independent functional description. For device-specific infor-
mation, the relevant manuals are available.

Data protocol http and https communication page IV Date: 30.04.2024

Content

1. Introduction 1

1.1. Explanation of terms used in the document .. 1

1.2. Formatting .. 1

1.3. Basic Scheme ... 2

1.4. Feedback - records .. 2

1.5. API - Level ... 2

1.6. Basic Authentication .. 2

1.7. Example of a http request using POST method ... 4
1.7.1. Request ... 4
1.7.2. Response .. 6

1.8. Basic configuration of a device for HTTP(S) communication 6

2. Description to the respective API - Level 8

2.1. Level 0 ... 8

2.2. Level 1 ... 8
2.2.1. Request types in API-Level 1 ... 8
2.2.1.1. Anatomy of a typical API-Level 1 request ... 8
2.2.1.2. Anatomy of a typical API-Level 1 response .. 8
2.2.1.3. Transfer of image data and long barcodes (since 04.03.18.04) 9
2.2.2. Request ... 10
2.2.2.1. Method: GET ... 10
2.2.3. Response .. 10
2.2.3.1. Required parameters details ... 12
2.2.3.1.1. Acknowledging records ... 12
2.2.3.2. Optional parameter details .. 13
2.2.3.2.1. Setting the device clock (df_time) ... 13
2.2.3.2.2. Emitting a beep sound at the device (df_beep) .. 13
2.2.3.2.3. Service mode (df_service) ... 14
2.2.3.2.4. Global, setup- or system variables (df_var) ... 14
2.2.3.2.5. Chain of events (df_ek) .. 15
2.2.3.2.6. Show message on display (df_msg) ... 15
2.2.3.2.7. Select the icon for displaying a message (df_msg_icon) 16
2.2.3.2.8. Define a backlight (df_backlight) .. 17
2.2.3.2.9. Setting the background message (df_info_msg) ... 18
2.2.3.2.10. Online function of the access control (df_ac2) .. 18
2.2.3.2.11. Sending a custom message to an access control device (df_custom_msg_ac2)
[in preparation] .. 20
2.2.3.2.12. Pre-checked online access control (df_ao_ac2) .. 20
2.2.3.2.13. Trigger access control event by server (df_trigger_ac2)....................................... 21
2.2.3.2.14. Fetch key-value pair from the device (df_kvp) ... 21
2.2.3.2.15. Set or reset a non-access control relay (df_set_relay) .. 23
2.2.3.2.16. Toggle a non-access control relay (df_toggle_relay) .. 24
2.2.3.2.17. Load a file from server to the device (df_load_file) ... 24
2.2.3.2.18. Transfer data from a device to the server (df_send_file) 24
2.2.3.2.19. Remove a file stored on the device (df_remove_file) .. 26
2.2.3.2.20. Delete fingerprint data from the device (df_remove_finger) 26
2.2.3.2.21. Update of list data (df_setup_list or df_ac2_list) ... 27
2.2.3.2.22. Count number of records within a table (df_table_count) 28
2.2.3.2.23. Select a row from a table (df_table_select) .. 28

Data protocol http and https communication page V Date: 30.04.2024

2.2.3.2.24. Append data to a table (df_table_append) ... 29
2.2.3.2.25. Update a table (df_table_update) .. 29
2.2.3.2.26. Delete data from a table (df_table_delete) .. 30
2.2.3.2.27. Firmware Update using https (df_load_firmware) ... 31

2.3. Feedback through System Messages ... 31
2.3.1. System messages to the list data download (feedback - records) 34
2.3.2. Associating command and system messages ... 46

2.4. Encryption .. 46
2.4.1. Illustrate the GET request .. 47
2.4.2. Detection of encryption ... 47
2.4.3. Response from the web server ... 48
2.4.4. Buffer sizes ... 48

Appendix A: Mapping of Communcation Libarary and Datafox Studio to HTTP Level 1
 50

A.1: Comparison of communication library and HTTP Level 1 .. 50

A.2: Comparison of Datafox Studio and http Level 1 .. 56

A.3: Structure of a transfer file ... 59
A.3.1: Forms and Chunks contained in the transfer file ... 61
A.3.1.1: Version information [Chunk „DFFV“] ... 61
A.3.1.2: Description of the file’s content [FORM „DESC“] .. 61
A.3.1.2.1: Hierarchy tag for the description [Chunk „HIER“] .. 62
A.3.1.2.1: Description text [Chunk „HTML“] .. 62
A.3.1.3: File content [FORM „DFF0“] .. 62
A.3.1.3.1: Type of data [CHUNK „FTYP“] ... 63
A.3.1.3.2: Auxiliary parameters [CHUNK „FAUX“] ... 64
A.3.1.3.3: File name [CHUNK „FNAM“] .. 64
A.3.1.3.4: Encoding-Informationen des Datenblocks [CHUNK „ENC “] 65
A.3.1.3.5: Compatibility information [CHUNK „COMP“] .. 65
A.3.1.3.6: Datei-Inhalt [CHUNK „DATA“] .. 65
A.3.1.3.7: Encrypted data chunk (replaces DATA chunk, if used) [CHUNK „DATE“] 66
A.3.1.3.8: Signature-Chunk [CHUNK „SIGN“] .. 66
A.3.1.3.9: Signed data chunk [CHUNK „DATS“] .. 66
A.3.1.4: Record / List data description [FORM „DFDS“] ... 67
A.3.1.4.1: Data record name [„DNAM“] .. 67
A.3.1.4.2: Index of the data record with the setup [„DIDX“].. 68
A.3.1.4.3: index of the priority field [„DPRI“] ... 68
A.3.1.4.4: Index of the key field [„DKEY“] .. 68
A.3.1.5: Information on columns of lists or data records [FORM „DCOL“] 68
A.3.1.5.1: Column content information chunk [„CINF“] .. 69
A.3.1.5.2: Column name chunk [„CNAM“] ... 69
A.3.2: File types ... 70

Appendix B: HTTPS Communication 72

B.1: Elements of the https infrastructure... 72

B.2: Establishing the connection ... 72

B.3: Validation of the server certificate .. 72

B.4: Communication .. 73

B.5: Using a self-signed (server-) certificate ... 73
B.5.1: Device configuration – Deploying a server certificate ... 74
B.5.2: Which certificate is used by the web server? (“old” Edge Browser) 75
B.5.3: Which certificate is used by the web server? (“Chromium” Edge Browser) 76
B.5.4: Device configuration – Deploying a client certificate ... 77

Data protocol http and https communication page VI Date: 30.04.2024

B.6: Creating a private CA .. 77
B.6.1: Creating the root key/certificate of the CA .. 77
B.6.2: Create derived key pairs ... 78

B.7: Analysis of certificates .. 78

B.8: Limitations of the Implementation .. 80

B.9: Additional Information ... 80

Appendix C: Initial device configuration using http 81

C.1: Sending info telegrams with configuration data cyclically ... 81

C.2: CRC Implementation of the info telegram .. 81

C.3: Use Case: Monitoring and Updating device certificates ... 82

Appendix D: Test server application with http integration 83

D.1: The User interface ... 84

D.2: Webserver configuration ... 85
D.2.1: Server .. 85
D.2.2: User Interface (UI) ... 86
D.2.3: Behaviour .. 86
D.2.4: Directories ... 87

D.3: Processing of requests ... 88

D.4: IFF files inside the web server .. 88
D.4.1: Analysis of IFF files .. 88
D.4.2: Creating an IFF file .. 89

D.5: Working and updating server certificates .. 90

D.6: Firmware-Update using the web server ... 90

Appendix E: Firmware Update using HTTP(S) 93

E.1: Prerequisites for using “query.php” and/or “match.php” ... 94
E.1.1: Sample script for deploying a firmware version at a server .. 94

E.2: Using “query.php” ... 95
E.2.1: Determining the latest firmware available ... 95
E.2.2: Determining the latest firmware from a release branch ... 96
E.2.3: Checking if a specific firmware version is available at the server............................... 96
E.2.4: Listing all firmware files available on the server .. 96

E.3: Using “match.php” .. 97

E.4: Delivering firmware content .. 98

Appendix F: Description of API-Level 0 99
F.1 Request .. 99
F.1.1 Method: GET ... 99
F.2 Response ... 99
F.2.1 Required parameters details .. 100
F.2.1.1 Parameter "checksum".. 100
F.2.2 Optional parameters to include into the response ... 101
F.2.2.1 Service mode ... 101
F.2.2.2 Global variables ... 102
F.2.2.3 Chain of events .. 102
F.2.2.4 Message ... 102
F.2.2.5 Online function of the access control (AC) .. 103
F.2.3 Encoding ... 104
F.2.3.1 Illustrate the GET request ... 104
F.2.3.2 Detection of encryption ... 104

Data protocol http and https communication page VII Date: 30.04.2024

F.2.3.3 Response of the web server ... 105

Appendix G: Distribution Update through the Access bus (Routing) 106
G.1 Distribution of Update using the access control bus ... 106
G.2 Update of access control devices using the Datafox Studio ... 106
G.3 Creating routing information when implementing firmware update yourself 107
G.3.1 Logical structure of routing information .. 107
G.3.2 Options ... 108
G.1.2.3 Concrete, complete routing rules .. 108
G.4 Determining access control bus participants in a live system 109
G.4.1 Structure of system variable „access.readerinfo“ .. 109
G.4.2 Section [global] ...110
G.4 3 Section [bus_<idx>] ..110
G.4.4 Section [reader_<busId>_<readerId>] ...110
G.4.5 Locating the [reader] sections ...110
G.5 Assignment of device types .. 111

Appendix T: Troubleshooting 112

T.1: Problems with specific web servers .. 112
T.1.1: Port inside the Host-Header of the http request ...112
T.1.2: Proxy server/load balancer and service mode (Connection: Close)112
T.1.3: Requests with absoluteURI or abs_path adressing ...112
T.1.4: Example: Applying the correct http.flags ...113

T.2: HTTPS connetion to an AWS / CloudFront service ... 113

T.3: My device reports SSL-Write -9984 error – although I installed the server’s certificate
correctly at the device. ... 113

T.4: Virtual Hosts and HTTPS (e.g., Microsoft IIS) .. 114

T.5: Reference to http.flags .. 114

T.6: Basic Authentication not working .. 115

T.7: Different certificates/certificate chains on the same web server 115

T.8: Free Memory during TLS communication ... 115

T.9: Runtime considerations on HTTPS communication ... 116
T.9.1: Closing the connection from the server side ...116
T.9.2: Cloud services ..116
T.9.3: Support from the device ...116

Data protocol http and https communication page 1 Date: 30.04.2024

1. Introduction

This document describes the communication between the devices and a web application using the
HTTP(S)-protocol.

Please note:
Communication via HTTP is possible in the current firmware versions for devices with
communication via TCP / IP. Thus, a module for LAN / WLAN or GPRS is required

1.1. Explanation of terms used in the document

Term Meaning

Web application
The application which receives requests from the device and sends appropriate
responses to the device.

Request
Request that is sent from the device to the Web application. Contains e.g.
data of a record.

Response
Response to a request that is sent from the Web application to the device. Con-
tains e.g. the information that the data has been successfully processed or in-
structions as set the time, etc. are run.

Client In this document, the device firmware is meant. Possibly a Web browser.

Server In this document the Web server is meant, that contains the Web application.

System
message

A signal generated by the firmware Message Event. This can be used in the setup
to generate a record of an event chain. Especially at http system messages can
be used to design the desired action (such as lists update) via a feedback data
set to confirm.

Action

An action is defined as a process to be executed or individual instruction.
For example, taking over a time, set a global variable or loading a list file a re-
spective single action. To be performed actions can be specified by the Web ap-
plication in the response and result in the client, if necessary to system mes-
sages.

1.2. Formatting

Parameter specifications in Request or Response are in italics.

Data protocol http and https communication page 2 Date: 30.04.2024

1.3. Basic Scheme

• A record is created in the unit due to user interaction or system events.

• The current data is sent to the server.

• In the server's response, in addition to be performed to confirm the record reception ac-
tions can be sent with. For example, a text message to display or list data to be updated.

• Because of the actions that System messages are deleted, whereby records are gener-
ated in the device, which can then be sent to the server. About this so-called feedback
records can get the message about the timing, success or failure of the action to your
web app.

1.4. Feedback - records

In the section “signal processing” of the Device Setup "System Messages" can be con-
nected to a chain of events. Through this event chains corresponding messages can gener-
ate records to the various events. The different events existing are described in the corre-
sponding functions below.

!
Danger:
Please note that no endless loops occur. For instance if you re-send to a reported error,
without fixing the same action to the device, there may be an infinite loop.

1.5. API - Level

To document extensions and changes to the interface, requests and responses work with an "API -
Level" declaration.

1.6. Basic Authentication

Basic authentication is a technology during HTTP communication workflow that may be used to
query login credential for a certain area (so-called realm) by the web server. These credentials – af-
ter being requested by the server – are transmitted as an http header field.

The technology is considered unsafe for unencrypted http communication, since the header field is
only transcribed (and not encrypted) when being transferred. Thus – if intercepted – it can easily be
decoded.

Data protocol http and https communication page 3 Date: 30.04.2024

Since the technology may be safely used in the HTTPS area, Datafox Devices offer this approach
starting with Version 04.03.16 as well.

The full communication workflow between a Datafox Device and you web service is as follows:

To configure basic authentication, you have to set three system variables, e.g. using the Device
Communication Settings from the Datafox Studio:

The password is shown only when you are entering it.

Data protocol http and https communication page 4 Date: 30.04.2024

Additional information is available in RFC 7617: https://datatracker.ietf.org/doc/html/rfc7617.

1.7. Example of a http request using POST method

The device constructs and http request according to the following schematics (the example in this
chapter reflects http API-level 1). The varying parts of the request are highlighted using yellow color
and described below:

1.7.1. Request

POST https://extern.datafox.de:443/putdata HTTP/1.1

Host: extern.datafox.de:443

User-Agent: Datafox/04.03.18.04.http.10 11.3478

Accept-Charset: ISO 8859-1

Accept: application/x-www-form-urlencoded, text/html

Content-Length: 57

Data-Records-In-Device: 12

<weitere Header-Felder>

df_api=1&df_table=Alive&df_col_DT=2019-01-04T10%3A20%3A46

The information displayed on a green background is the actual data that the device transmits to the
server. These are composed as follows:

- df_api=1: Identifier for data

- df_table=Alive: Name of the data set description in the device "Alive".

- df_col_DT=2019-01-04T10%3A20%3A46: Content of the field "DT" - with HTML atomic rep-

resentation of colons as %3A. Consequently, it is 4 January 2019 10:20:46.

Please note:
The header field “User-Agent” is provided from Firmware Release 04.03.18.04 on
with following structure:

User-Agent: Datafox/<Firmware incl. Branch-Tag> <Dev-ID>.<SN>

The elements shown in bold italics are replaced by actual device parameters when
sending an http request:

• Firmware incl. Branch-Tag: The firmware version including a tag identifying a fea-
ture- or bugfix-version (e.g. “04.03.18.04.http.10”. The firmware version is
04.03.18.04, the branch tag “http.10”)

• Dev-ID: Internal device type id in decimal representation (11 represents an EVO
4.3)

• SN: Serial number in decimal representation

You can create a unique device identification by combining the Device Type Id (Dev-
ID) and the serial number (SN).

Examples:

User-Agent: Datafox/04.03.18.04.http.10 11.3478

User-Agent: Datafox/04.03.18.05 11.3478

https://datatracker.ietf.org/doc/html/rfc7617

Data protocol http and https communication page 5 Date: 30.04.2024

The highlighted fields inside the request above can be adopted using the following parameters:

- POST https://extern.datafox.de:443/putdata HTTP/1.1

You can configure the http method (GET or POST) using the first letters of the system varia-
ble “com.http_mode[.].send”. If this variable starts by “POST”, a POST request will be gener-
ated by the device, otherwise the device will send a GET request.

- POST https://extern.datafox.de:443/putdata HTTP/1.1

The system variable “com.http” configures if either http or https protocol are being used. If
you enable https communication here, the “s” is added to the URL provided you are using
“absoluteURI” addressing.

- POST https://extern.datafox.de:443/putdata HTTP/1.1

According to RFC 2616 Sec. 5.2.1 there are abs_path and absoluteURI addressing available
for “normal” http request. The mode shown above is absoluteURI addressing, a request us-
ing abs_path would be “POST /putdata HTTP/1.1”. Since absoluteURI is not support by

all webservers correctly – despite being required for http/1.1 – you may configure the ad-
dressing mode using the system variable “http.flags”. Please see the details in Appendix
Troubleshooting.

- POST https://extern.datafox.de:443/putdata HTTP/1.1

The request type may be configured using the system variable “http.type”. The devices cur-
rently support types “1.0” and “1.1” which differ concerning the connection close behaviour –
an http/1.0 connection is close immediately after the data has been transferred, an http/1.1
connection typically is kept alive for roughly 30 seconds after having transferred the data to
enable another communication to be processed.

- Host: extern.datafox.de:443

The host header inside the http request – according to RFC 2616 – may contain the port,
which is being accessed. However, this is not supported by all web servers correctly. Thus
you may control the transmission of the port using the system variable “http.flags” (again,
please consult Appendix Troubleshooting for the details)

- Additional header fields may be includes using the file “header.extensions”. The content of
this file will be included into any request the device sends to the server – provided the re-
quest type is enabled by the system variable “http.header_extension_flags“. This variable
contains the sum of the values (as decimal number), for which additional header flags shall
be sent:

o 1 = data record requests

o 2 = KVP requests

o 4 = list data download requests (Setup and access control)

o 8 = IFF download requests

o 32768 = other requests

!
Attention:
Please do not use header extensions excessively. The overall length of the header is
limited by the device, please supply at most 500 bytes as header extensions.

Data protocol http and https communication page 6 Date: 30.04.2024

Please keep in mind, that the http interface does not provide any duplication checks on
the header fields. You only may add fields to the header in this way – there is no way to
change the fields generated by the device.

Please ensure, that the “header.extensions” file’s line separator is CR and LF – as the
HTTP specification requires. A recoding of the line separator is not performed by the de-
vice firmware.

1.7.2. Response

The server's response looks like this:

HTTP/1.1 200 Ok

Content-Length: 30

Content-Type: text/html; charset=ISO-8859-1

df-action-id: A6ID

df_api=1&df_kvp=var,http.alive

The server response is interpreted as follows:

- Checking the HTTP status code

HTTP/1.1 200 Ok

If this is between 200 and 299, the evaluation of the server response continues.

- Check of the API identifier in the response body:

df_api=1&df_kvp=var,http.alive

The protocol requires that "df_api=1" is at the beginning of the response body.

- Evaluation of instructions in the body:

df_api=1&df_kvp=var,http.alive

The body contains the instruction that the device should transmit the current value of the
system variable "http.alive". This causes the unit to transmit this value to the web server in a
follow-up request.

1.8. Basic configuration of a device for HTTP(S) communication

In order to be able to work as an HTTP-client, some settings are required on the unit. These are re-
alised - after the basic network configuration has been established via LAN, WLAN or mobile radio -
via the following system variables:

Name Function

com.active
Set to "0". Active mode communication has priority over HTTP commu-
nication.

Data protocol http and https communication page 7 Date: 30.04.2024

com.http

1 = HTTP communication

2 = HTTPS communication

When using HTTPS, it is necessary to deposit server certificates!

com.http_mode[0].host

com.http_mode[0].port
Defines the server endpoint for communication

com.http_mode[0].send
Defines the path on the server to which records are to be delivered (typ-
ically the script that processes the record in the server).

http.alive Intervall (in Sekunden) zwischen zwei Alive-Meldungen des Geräts

http.api Set to "1" to use API-Level 1.

http.flags Flags that influence the behaviour of the HTTP interface.

Please note:
As part of the development, you should consider communicating directly via HTTP
instead of HTTPS. In this case, you can directly observe the communication be-
tween server and device with external tools such as Wireshark.

Data protocol http and https communication page 8 Date: 30.04.2024

2. Description to the respective API - Level

Currently two different methods for HTTP communication are available.

2.1. Level 0

Using API-Level 0 is not recommended any more, since controlling the device is very limited. You
can find the documentation at Appendix F: Description of API-Level 0.

2.2. Level 1

!

Attention:

You will require Hardware V4 devices to
use HTTP API-Level 1.

In the device, the HTTP API is selected
via the http.api parameter in the unit

communication settings.

2.2.1. Request types in API-Level 1

Http API-Level 1 distinguishes two types of requests.

- The transmission of data records uses URL encoding to transport the data. These requests
can be answered with control commands and thus a task can be assigned to the device. See
the subsections of section 2.2.3.

- The transmission of (typically IFF-encoded) binary data from the device to the server is

based on the FORM upload mechanism.

2.2.1.1. Anatomy of a typical API-Level 1 request

• First field sent is ‘df_api=1’ always. This field is unencrypted even for active encryption re-
quests.

• If it is a data set, its name is transmitted as parameter df_table.

o All data fields of the record start with "df_col_" followed by the name of the field set in
the unit setup.

• In fields of the type "Date and Time" the date and time are separated using a ‘T’.

2.2.1.2. Anatomy of a typical API-Level 1 response

There are two modes of sending a response to a record request in API-Level 1. You can send in-
structions to the device for execution. These are introduced by df_api=1 and must satisfy the follow-
ing general conditions:

- The parameters are generally transmitted in the response body and stored URL-coded.
- If encryption is active, the parameters df_c, df_cb and df_ce are sent.

Please also note that this encryption system is quite weak and HTTPS is available on hard-
ware IV devices. Therefore, the description in section 2.4 has been separated out.

Data protocol http and https communication page 9 Date: 30.04.2024

- All characters except letters, digits, - (minus), . (full stop), _ (underscore) and ~ (tilde) shall be
encoded as %xx, where xx is the hexadecimal ASCII code of the character to be encoded
[RFC 3986 section 2.3 / 2.4].

- Files to be downloaded from the device can only be provided by the web server itself to
which the request was sent. It is not possible for the unit to send a request to another web
server here.

- Path specifications with which a download is triggered are always considered absolute on
the web server.

Alternatively to the “df_api=1” response, you may directly send an IFF file to the device as de-
scribed in A.3: Structure of a transfer file. If the file sent conforms the IFF structure, the data rec-
ord is considered to be acknowledged. The device will then evaluate the IFF file and apply its con-
tent.

Please send a status code between 200 and 299 in the HTTP response (see sectionn 2.2.3.1.1).

Please note:
Please note that if the response from the server does not transmit the status code 200
and neither begins with df_api=1 nor represents a valid IFF file, the unit does not con-
sider the data set as acknowledged.

You do not express your agreement with the content of the data set with the status code
200, but merely acknowledge receipt and assume responsibility for the reported data.

2.2.1.3. Transfer of image data and long barcodes (since 04.03.18.04)

To transport images (as collected either from the camera or from the signature function) or long bar-
code values an IFF file upload request of type 0xDF06 is generated – provided the system variable
COM.HTTP_MODE[.].SEND_IFF is not empty (please see Appendix A.3 for details on the transfer
file). This data transfer is attempted once as soon as the device records an image/long barcode. If
this connection fails, the transfer is not attempted again automatically – you then may request the
image explicitly using the df_send_file command.

Please note:
With firmware release 04.03.20.06 is has been added, that an alive record is send im-
mediately after uploading an image or a barcode to the server. During development we
observed the Alive arriving ~ 200 ms after the IFF upload to the server is completed, us-
ing HTTP(S) and LAN. The measured runtime depends on many factors, so it may devi-
ate in real customer networks.

The process of sending IFF file to an HTTP server follows the process detailed in section 1.7, how-
ever the Datafox protocol described in this document does not apply here. The following aspects
shall be mentioned explicitly:

- The transfer of data of done to the SEND_IDD-Endpoint using a POST-Request.

- The data transfer uses “multipart/form-data” with MIME Multipart Media Encapsulation.

- You may not send an action to the device using the response. It is required that an HTTP sta-

tus code 200 and an empty response body sent with the response.

A sample transaction where EVO 3.5 Pure (192.168.2.14) uploads fingerpint data to a server
(192.168.1.162) can be accessed as Wireshark capture at

https://www.datafox.de/download/sample-device-upload.pcapng

https://www.datafox.de/download/sample-device-upload.pcapng

Data protocol http and https communication page 10 Date: 30.04.2024

2.2.2. Request

Request from the client (device) to the server.

2.2.2.1. Method: GET

Please note:
If you need a fixed parameter e.g. a client ID, which is sent with every request, then you
can have it included into the http header (see section 1.7.1, “header extensions”) or set
this in the URI of the system variables com.http_mode[n].send.

Example: /path/to/script.php?clientid=1234&

Please make sure that the string has a length limit of 63 characters and keep in mind,
that “df_api=1” then will not be the first parameter in the request.

Parameter name Meaning

df_table
Name of data set description to which the following data fields are
assigned.

df_type
It is a device message not generated by a record (e.g. if the server
asks the device for the value of a variable, it will receive the re-
sponse as a "df_type=kvp"-coded response)

df_record_state

Encoding, of the state is considered “online” or “offline”:
1 = online
2 = online, record is being resend
3 = offline
4 = offline, record is being resend

Please note: Including the df_record_state into the request is

controlled by the system variable http.record_state.

Please note:
The df_record_state is only available for data rec-

ords associated to operating the device.
System messages, alive records or records from the
access control subsystem, etc. do not carry this prop-
erty.

df_col_ {Field Name}

Value of the field of the data record description. The name of the
field as it appears in the record description, the static part “df_col_”
prepended. “Col” is the abbreviation of “column”.

For fields of the type “Date Time” the content is encoded as follows:
Format: YYYY-MM-DDThh:mm:ss
Example time = 2016-11-17T12:13:14

2.2.3. Response

Data protocol http and https communication page 11 Date: 30.04.2024

Response from the server to the client (device).

Content-Type: application/x-www-form-urlencoded; charset: iso-8859-1

With the response you may send commands to the device as shown in the following table.

Instruction Name Meaning

df_time=2016-11-17T12:13:14 Set the date and time on the device.

df_beep=1 (1-11) OK signal / generate beep on the device

df_service=1,www.datafox.de,10047
Connect to the DFCom Communication library using active
mode. Also possible with the DatafoxStudioIV. Specification
of IP/URL and port possible.

df_var=setup.1,value Change the value of a global variable in the setup.

df_ek=name Trigger an action in the device. Start an input chain in signal
processing.

df_msg=This\ris\ra\rMessage,5,1,0 Send a text message to the display.

df_msg_icon=2
Defines the icon to be used when showing a message in the
device. The icon is taken from the design and associate to
an input sequence (F2 in this example)

df_backlight=0,5,255,255,0,192
Defines the colour of a device’s backlight – for a certain pe-
riod of time as a RGBW value.

df_info_msg=Info\rMessage,0 Defines the text of an info message.

df_ac2=010,1,10,20,5
AC = access control.
Trigger access control actions.

df_cus-
tom_msg_ac2=010,1,1,0,Hello%20
World

Sends a message to a device that is connect to the access
control bus.

df_ao_ac2=0,1234
Acknowledges an action of the pre-checked access control.

df_trigger_ac2=1,011,6543210,0
Simulates a clocking performed at an access control RFID
reader.

df_kvp=var,ID
Instructs the device to send the value of a system variable.
The value is sent as a key-value-pair to the server.

df_set_relay=2,close,5
Defines the state of a relay for given period of time that is not
handled by the access control module.

df_toggle_relay=2,5
Changes the state of a relay for a given period of time. The
relay may not be handled by the access control module.

df_load_file=/path/on/server Instructs the device to download a file from the server.

df_send_file=/logs/,syslog,0 Instructs the device to upload a file to the server.

df_remove_file=root:datafox.cert Instructs the device to delete a specific file.

Data protocol http and https communication page 12 Date: 30.04.2024

Instruction Name Meaning

df_remove_finger=1980,all Remove fingers from a fingerprint sensor.

df_setup_list=Per-
sonal,/path/to/list.txt

Give the device a new list of personnel, for example.

df_ac2_list=Identifica-
tion,/path/to/list.txt

Give the device a new access control list.

df_table_count=list.PID
Counts the number of entries within a list stored on the de-
vice.

df_table_select=list.PID,/up-
load/form,Unit=Development,PID=5

Selects on or more entries from a list and uploads them to
the server.

df_table_append=list.PID,9999,,Visi-
tor,

Appends a record to a list stored on the device.

df_table_update=list.PID,,,Unit= Changes values within a list stored on the device.

df_table_delete=list.PID,Unit=Devel-
opment

Removes rows from a list stored on the device.

Please note:
The response is used to send jobs to the terminal. The encoding follows the URL en-
coding as being used by a web browser when sending parameters to a web server. The
parameters are composed out of key-value pairs – key and value are separated by ‘=’,
pairs are separated by ‘&’.

Should you happen to need a ‘=’, ‘?’, ‘&’ or comma character inside your message,
these will have to be represented by their entities: %3d (‘=’), %3f (‘?’), %26 (‘?’) or %2C
(Comma).

2.2.3.1. Required parameters details

Parameter name Meaning

df_api

Descripts the API-Level of the response. Please use 1.

!

Danger:
Please make sure that there are no endless loop by
constantly sending missing or wrong information. The
client sends the data set until it is acknowledged by a
response ‘df_api=1’ and the HTTP Result “200 OK”.

2.2.3.1.1. Acknowledging records

A data set is acknowledged by replying ‘df_api=1’ from the server with an HTTP response having
result code “200 Ok”. If the specification of ‘df_api’ is missing or the HTTP server sends a status
code different from 200, the data record is not considered acknowledged and will be sent again.

Data protocol http and https communication page 13 Date: 30.04.2024

Since firmware release 04.03.20.11 you may supply a status code 201-299 to express, that the data
record should not be acknowledged but the instructions from the response (see following section)
shall be processed.

Instead of sending a protocol level response “df_api=1…” a valid IFF file as defined in Appendix A.3
may be sent directly. If the device discovers this it checks the consistency of the file and – upon veri-
fying the integrity – acknowledges the data record and evaluates / processes the IFF file’s content.

2.2.3.2. Optional parameter details

Optional parameters can be transmitted to the device in the HTTP response to trigger an action.
This chapter describes the different instructions and their parameters.

2.2.3.2.1. Setting the device clock (df_time)

Parameter name Meaning

df_time

The date and time that will be set by the device. The data and time
supplied will be applied by the device when deviating more than +/-
10 seconds from the device’s clock.
Format: YYYY-MM-ddThh:mm:ss
Example: df_time = 2016-11-17T12:13:14

Setting the time in the unit is initiated by returning the df_time command.

df_time=2023-05-25T06:30:14

2.2.3.2.2. Emitting a beep sound at the device (df_beep)

Parameter name Meaning

df_time

The date and time that will be set by the device. The data and time
supplied will be applied by the device when deviating more than +/-
10 seconds from the device’s clock.
Format: YYYY-MM-ddThh:mm:ss
Example: df_time = 2016-11-17T12:13:14

df_beep

Beep signal.
The table is a ‘+’ used to represent a long tone and, - for a short
tone.

1 OK signal

2 ERROR signal

3 +

4 - +

5 - -

6 + +

7 - - -

8th + + +

9 - + -

10 + - +

Data protocol http and https communication page 14 Date: 30.04.2024

11 SMS signal

To emit a beep code at a device, send the instruction df_beep=<value> to the device. Please refer
to the table above for the different, possible tone sequences.

2.2.3.2.3. Service mode (df_service)

Parameter name Meaning

Flag

A value of 1 causes the client to enter the service mode after having
transmitted all data records.

A value of 2 causes the device to enter service mode even if data
records are present on the device.

Please note:
Standard HTTP behaviour is that a connection is closed
by the Web server. The client will switch to service
mode only when the web server closed the connection.

To end a connection, you can supply "Connection:
close" in the HTTP header of the server’s response.
This causes the web server to end the connection.

Host
If the parameter is omitted, the value of the system variable

com.http_mode[n].host is used.

Port
If the parameter is omitted, the value of the system variable

com.http_mode[n].port is used.

Key

This parameter defines, if the service mode connection is
- Unencrypted (parameter omitted or empty)
- Encrypted with the first active mode server’s key (“key0”)
- Encrypted with the second active mode server’s key (“key1”)

Please note:
This parameter requires at least firmware version
04.03.14.09.

The activation of the service mode required sending the following parameters

df_service=<Flag>,<Host>,<Port>,<Key>

with the server’s response, e.g.

df_service=1,active-mode-server.my.net,8000

df_service=1,second-active-mode-server.my.net,8000,key1

2.2.3.2.4. Global, setup- or system variables (df_var)

Data protocol http and https communication page 15 Date: 30.04.2024

Parameter name Meaning

Name

Name of a global variable with their index 1-8.
Example: setup.1

Name of a global variable.
Example: setup.GlobVar1

Value Value to be set

To set the value of a global variable, send

df_var=<Name>,<Value>

with the server’s response, e.g.

df_var=setup.1,4711

2.2.3.2.5. Chain of events (df_ek)

Parameter name Meaning

Name

Name of a chain of events, which is to be executed.

Please note:
Event chains are chains as used in signal processing.
These do not allow user interaction, so if you want to
post a message to a user at the terminal, e.g. in re-
sponse to an entry/leave event, please consider using
df_msg.

2.2.3.2.6. Show message on display (df_msg)

Parameter name Meaning

Message

Text message to be shown on the display. A newline can be inserted
into the text by specifying "\r".

!

Danger:
The message is only displayed if the ‘server online’ op-
tion is active in the device’s setup. This option is found
on the page ‘default settings’.

Additionally, is it required, that the “df_msg”-reply is
sent in response to an online record base on a
user’s device operation – a system message or an
alive data record are never online data records.

Data protocol http and https communication page 16 Date: 30.04.2024

Duration
Specifies the time in seconds for how long the message is dis-
played.

Beep

Beep signal.
The table is a '+' used to represent a long tone and, - for a short
tone.

0 No Signal

1 OK signal

2 ERROR signal

3 +

4 - +

5 - -

6 + +

7 - - -

8th + + +

Font

Specifies the font size and style.

0 Standard font

1 16 pixel (7 lines)

2 16 pixel, fixed width (7 lines)

3 19 pixel (6 lines)

4 19 pixel, fixed width (6 lines)

5 21 pixel (5 lines)

6 21 pixel, fixed width (5 lines)

!
Attention:
The pixel values indicated in the table and lines are ap-
proximations and may vary depending on the device
used.

To display a message on the receiving terminal, you may add the following parameter to the server‘s
response:

df_msg=<Message>,<Duration>,<Beep>,

The following parameter

df_msg=This\ris\ra\rmessage,5,1,0

will trigger displaying “This is a message” in the terminal’s display (a single word per line) for 5 sec-
onds. Additional an “ok”-beep code is generated.

! Attention:
Please be aware or the entity representation rules of ‚=‘, ‚?‘, ‚&‘ or comma.

2.2.3.2.7. Select the icon for displaying a message (df_msg_icon)

Data protocol http and https communication page 17 Date: 30.04.2024

Parameter name Meaning

Number of the function key

With this message you can specify the icon of the function key to
be used when displaying a message. If provided, the icon associ-
ated in the design is being used, otherwise the device uses the
built-in icon.

Example:

df_msg_icon=2

Show the icon associated the F2 function (typically „leaving“).

df_msg=Message\rwith%20Icon,5,1,0&df_msg_icon=4

This message sets the icon to be to the one associated to function F4 and displays the message us-
ing this icon.

2.2.3.2.8. Define a backlight (df_backlight)

You can instruct the device to show a specific backlight color in response to a dataset record. For
this, you may send the df_backlight message.

Parameter name Meaning

Backlight ID

0: Transponder
1: Logo
2: Touch-Keyboard (EVO 4.3)
3: User defined
4: Fingerprint

Delay
Duration in seconds, for that the backlight is set.
0 = infinite

Intensity red Value between 0 (no red light) and 255 (full red light)

Intensity green Value between 0 (no green light) and 255 (full green light)

Intensity blue Value between 0 (no blue light) and 255 (full blue light)

Intensity white Value between 0 (no white light) and 255 (full white light)

Remark:

- Not every devices has each of the above described backlights equipped (e.g. the EVO 4.3 is
the only with a touch keyboard backlight currently)

- Not all backlights are full-color backlights (e.g. the touch keyboard backlight of the EVO 4.3
is a white-only backlight)

Example:

df_backlight=0,5,255,255,0,192

sets the transponder’s backlight to show bright (192) yellow (255, 255, 0) for five seconds.

Data protocol http and https communication page 18 Date: 30.04.2024

2.2.3.2.9. Setting the background message (df_info_msg)

Parameter name Meaning

Message
Message to be displayed on the device’s screen. A linefeed can be
added into the message by sending a „\r“.

Font

Specifies the font size and style.

0 Standard font

1 16 pixel (7 lines)

2 16 pixel, fixed width (7 lines)

3 19 pixel (6 lines)

4 19 pixel, fixed width (6 lines)

5 21 pixel (5 lines)

6 21 pixel, fixed width (5 lines)

!
Attention:
The pixel values indicated in the table and lines are ap-
proximations and may vary depending on the device
used.

The set the background message, please add the following section into the http Response

df_info_msg=<Message>,

e.g.

df_info_msg= This\ris\ra\rMessage,0

! Attention:
Please be aware or the entity representation rules of ‚=‘, ‚?‘, ‚&‘ or comma.

2.2.3.2.10. Online function of the access control (df_ac2)

Parameter name Meaning

Module
The value of the string, the format of the field "TM" of the "reader" list.
Therefor it must consist out of 3 digits always.

Master

Id for the RS485 bus AC; AC describes the bus strand.
RS485 bus ID 1
RS485 bus ID 2 etc.

You need to specify ‘Master’ along with ‘Module’.

Data protocol http and https communication page 19 Date: 30.04.2024

Mask

Values mask for the device specified. Sum up the individual bit values. If
you – for example - want to turn on the red LED and the relay 3, then
passed by value "4 + 32 = 36".

Value / Bit Description
1 / 1 If the bit is set, the buzzer is activated.
2 / 2 If the bit is set, the green LED is addressed.
4 / 3 If the bit is set, the red LED is activated.
8 / 4 If the bit is set, the 1st relay is addressed.
16 / 5 If the bit is set, the 2nd relay is addressed.
32 / 6 If the bit is set, the 3rd relay is addressed.
64 / 7 If the bit is set, the 4th relay is addressed.
128 / 8 If the bit is set, the yellow LED is addressed (from 04.03.16)

/ 5th relay (until 04.03.15) addressed.
256 / 9 If the bit is set, the 5th relay (from 04.03.16) / 6th relay (until

04.03.15) is addressed.
[from
04.03.16]

512 / 10

If the bit is set, the 6th relay is addressed.

1024 / 11 If the bit is set, the 7th relay is addressed.
2048 / 12 If the bit is set, the 8th relay is addressed.
4096 / 13 If the bit is set, the 9th relay is addressed.
8192 / 14 If the bit is set, the 10th relay is addressed.
16384 / 15 If the bit is set, the 11th relay is addressed.
32768 / 16 If the bit is set, the 12th relay is addressed.
65536 / 17 If the bit is set, the 13th relay is addressed.
131072 / 18 If the bit is set, the 14th relay is addressed.

[from
04.03.18]

… / 19 If the bit is set, the 15th relay is addressed.
… / 20 If the bit is set, the 16th relay is addressed.
… / 21 If the bit is set, the 17th relay is addressed.
… / 22 If the bit is set, the 18th relay is addressed.
… / 23 If the bit is set, the 19th relay is addressed.
… / 24 If the bit is set, the 20th relay is addressed.
… / 25 If the bit is set, the 21st relay is addressed.
… / 26 If the bit is set, the 22nd relay is addressed.
… / 27 If the bit is set, the 23rd relay is addressed.
… / 28 If the bit is set, the 24th relay is addressed.
… / 29 If the bit is set, the 25th relay is addressed.
… / 30 If the bit is set, the 26th relay is addressed.
… / 31 If the bit is set, the 27th relay is addressed.
… / 32 If the bit is set, the 28th relay is addressed.

State / Function

State which will be approved by the specified units.

0 Off

1 On

2 Toggle (600ms on, 600ms off)

3 3 times turn for 500ms

Duration
[applies only for state/function = 1]: The duration, for that the mask is ap-
plied.

Data protocol http and https communication page 20 Date: 30.04.2024

Interpretation:
- 0 = always on
- 1 - 40 = duration in seconds, for that the mask is active

To trigger an access control action, add the parameter

df_ac2=<Modul>,<Master>,<Mask>,<State>,<Duration>

to your server’s http response.

2.2.3.2.11. Sending a custom message to an access control device (df_custom_msg_ac2) [in

preparation]

In order to send data directly to a device in the access control system, the http command df_cus-
tom_message_ac2 may be used. If the access controller receives this command it will relay it to the
references module directly.

In order to enable the transfer of binary data, data may be encoded hexadecimally during the HTTP
transfer. If this encoding is selected, the access controller combines every pair of subsequent char-
acters into one byte – the resulting binary data array is sent to the access control device.

Parameter name Meaning

Module
The value of the string, the format of the field "TM" of the "reader"
list. Therefor it must consist out of 3 digits always.

Master

Id for the RS485 bus AC; AC describes the bus strand.
RS485 bus ID 1
RS485 bus ID 2 etc.

You need to specify ‘Master’ along with ‘Module’.

Function

Code for the function to be executed by the access controller
1 = Relay message to specified device

Encoding
0 = ASCII (URL encoded)
1 = Hexadecimal

Data Data conforming above encoding.

Example:

df_custom_msg_ac2=010,1,1,1,48616c6c6f2057656c74

df_custom_msg_ac2=010,1,1,0,Hallo%20Welt

Both instructions send the text “Hallo Welt” (German for “Hello World”) to the access control device
010 at access control bus 1.

2.2.3.2.12. Pre-checked online access control (df_ao_ac2)

In the context of pre-checked online the AC controller computes the action it would perform in offline
mode. The decision is the sent to the server as a dataset. The AC controller waits for acceptance or
denial of the action.

Data protocol http and https communication page 21 Date: 30.04.2024

The data is build according to normal AC datasets. The server’s response is expected in the follow-
ing form:

Parameter name Meaning

Mode

Decision of the server.

• 0 = reject

• 1 = accept

Group
ID of a group. The group is required for granting access if the tran-
sponder id was not present in the identification list – if the action2
list requires a group id.

Example:

df_ao_ac2=1

df_ao_ac2=0,1234

2.2.3.2.13. Trigger access control event by server (df_trigger_ac2)

This command can be used to trigger an AC2 action. The behaviour is equivalent to a transponder
being present to an RFID reader. For this, the reader and transponder ids have to be sent to the ac-
cess control master. The reader has to be connected to the AC master as well – the reader id has to
be taken from the reader AC2 list used by the master.

Parameter name Meaning

Access Master ID
Defines the bus to be used. Corresponds to the ZM column from
the Reader list.

Door Module ID
Address of the reader device within the selected bus. Corresponds
to TM column from the Reader list.

Transponder ID The value to be simulated as having been read

Pin
Pin code for access control processing. The content should corre-
spond to the Pin column from the Identification list.

Example:

df_trigger_ac2=1,011,876543210,0

2.2.3.2.14. Fetch key-value pair from the device (df_kvp)

Some data being present on a device is not provided to the server by means of a data set. To collect
there information, the server can request this data to be sent as a key-value-pair by sending a
“df_kvp” request to the device. The following data may be accessed in this manner:

- Current Time and data [time],
- The device serial number [serialnumber],
- The firmware version [firmwareversion],
- Setup or global variable [var],
- State one or more relais [relais],

Data protocol http and https communication page 22 Date: 30.04.2024

- State of the flash memory [flashstate] and
- Configuration Information [info]
- Device Hardware Information [hw]

Sending a „df_kvp“ request to the device requires a token (in brackets in above enumeration). Some
of the tokens require additional parameter:

Token-Name Parameter
Result (Example)

firmwareversion ---
kv=firmwareversion,\

 04.03.15.05.EVO35

flashstate ---

info

The following information is sent:

- serial number kv=serial-
number,1234

- device type kv=device,11

- Setup kv=setup <fn>,<CRC>
 kv=setup4 <fn>,<CRC>

- certificates kv=cert <fn>,<CRC>

CRC is a 32-Bit CRC in hexadecimal repre-
sentation.

Please check Appendix C.2 for details on
the CRC computation.

relais

ID of the relay to be reported,
starting at 1. If omitted, the
states of all relais are being
sent.

kv=relais1,open

serialnumber --- kv=serialnumber,1234

time --- kv=time,2020-09-17T07:00:00

var Name of the variable kv=var Ausweis,876543210

hw ---

kv=board,50006,4.7a& (MB)

kv=module,29,1.5c,14& (PoE)

kv=module,37,1.4c,6& (Ser)

kv=module,102018,1.2b,6.1& (TP)

kv=module,11,1.5a,8& (Eth)

kv=module,30,1.0b,11& (Gfx)

kv=module,110003,1.1c,11.1 (Dis)

 Art.No. Version Location

extinfo

extinfo,ac, \
<module>, \
<master>

kv=serialnumber,8675&kv=device,23& (info)

kv=setup EVO 2.8.aes,0x12345678& (obs)

kv=setup4 EVO 2.8.aes,0x12345678&

kv=cert test.cert,0x087654321&

kv=firmwareversion,04.03.15.05.EVO35& (fw)

kv=board,50006,4.7a& (hw)

kv=module,29,1.5c,14&

Data protocol http and https communication page 23 Date: 30.04.2024

kv=module,37,1.4c,6&

kv=module,102018,1.2b,6.1&

kv=module,11,1.5a,8&

kv=module,30,1.0b,11&

kv=module,110003,1.1c,11.1

Note:
The “info” telegram contains two CRC values. The CRC value “setup” is computed for
internal data structures, the value “setup4” is computed for the original AES file that has
been transported using the HTTP/HTTPS API. The CRC algorithm is described in Ap-
pendix “C.2: CRC Implementation of the info telegram”.

If the setup has been uploaded to the device using the Datafox Studio directly, the
“setup4” value will not be present in the “info” telegram.

Example (Request):

df_kvp=serialnumber&df_kvp=var,Transponder&df_kvp=relais1&df_kvp=re-

lais2

The computed result is send as a GET request to the server. The request does contain a
df_type=kvp field rather than a df_table value. The key-value-pairs will be sent as comma separated
values.

The answer to above query will look as follows:

Part of the URL Explanation

http://<host>:<port>/<base-url>?

 df_api=1&

 df_type=kvp& No dataset – key-value-pairs!

 kv=serialnumber,2045& Serial number

 kv=var Transponder,876543210& Global variable: „Transponder“

 kv=relais1,open& Relay 1 opened

 kv=relais2,closed Relay 2 closed

2.2.3.2.15. Set or reset a non-access control relay (df_set_relay)

Relays assigned to the access control may be set or reset in online mode of the access control ex-
plicitly. For all other relays you may use the df_set_relay command to manipulate them:

Parameter name Meaning

Relay-ID ID of the relay to be manipulated, starting at 1

State (directly) after this
command

Use codes „close“ or „open“ here.

Duration Duration in seconds (1 up to 60 seconds, 0 for infinite)

Data protocol http and https communication page 24 Date: 30.04.2024

Example:

df_set_relay=2,close,5 (closes relay 2 for 5 seconds, then it is opened)

2.2.3.2.16. Toggle a non-access control relay (df_toggle_relay)

Alternatively you may toggle a relay for a specific duration.

Parameter name Meaning

Relay-ID ID of the relay to be manipulated, starting at 1

Duration Duration in seconds (1 up to 60 seconds, 0 for infinite)

Example:

df_toggle_relay=1,2 (switch relay 1 for a duration of 2 seconds)

2.2.3.2.17. Load a file from server to the device (df_load_file)

Using this function you instruct the device to download a transfer file from the server. The encoding
of a transfer file is described in Appendix A. Upon successful download of the file the device checks
the integrity of the file before applying it.
If this check fails, the entire transfer file is being ignored. System messages according are being
generated – provided they are active (see section 2.3.1).

Example:

df_load_file=/path/on/server?with=optional&server=parameters

Note:
There are – as described in Appendix A.3.2 – different content types inside the IFF file.
These types determine how an IFF file is applied to or processed by the device. If you
want to transfer a file directly to a device’s flash filesystem, please use type 0xDF00.

Note:
If you want to send a single file in response to a request, you may send the IFF file di-
rectly as HTTP response (see 2.2.1.2)

!
Caution:
This function may be used to abuse the device’s storage. A device with a filled up filesys-
tem will not work as expected – you may render it unusable in this way.

2.2.3.2.18. Transfer data from a device to the server (df_send_file)

This function allows sending specific file data from a device to the server.

- The target upload form on the server is passed as first parameter to the df_send_file com-
mand

- The data to be sent is passed along with the upload request as a token – which may require
additional parameters separated by commas.

Data protocol http and https communication page 25 Date: 30.04.2024

Parameter name Meaning

Target path Path on the server, where the file requested is uploaded to

Upload content token See next table on tokens

Optional parameters Additional parameters as defined by next table

Token-Name Parameter name Meaning

finger

<PID>,<FID> or
<PID>,all or
all

Transfer a single fingerprint template, the fingerprint
template of a single person or all fingerprint tem-
plates.

Note:
This function is currently available only
for the optical fingerprint sensor „Saturn
01“.

finger2

<format>,<PID>,<FID> or
<format>,<PID>,all or
<format>,all

Similar to „finger“. <format> may be chosen to be
either

- 1 (0xDF0E) or
- 2 (0xDF18)

flash
<Filename>

Reads a file from the device’s filesystem and sends
it to the server.

list
setup,<list name>
ac2,<list name>

Sends a setup list or a list from the access control
system to the server. The list is identified by its <list
name>.

syslog

<restore-flag> Transfers the device’s system log to the server. If
the <restore-flag> is set to 1, the device recon-
structs the whole log present on the device.

Note:
The system log is prepared by the de-
vice and afterwards transferred to the
server. Preparing the system log may
consume roughly 2 minutes, if the de-
vice has not been read for a longer pe-
riod.

A syslog upload file may be up to 512
kB in size.

setup
--- Transfers the setup currently being used by the de-

vice to the server.

structure
record
setup

Transfer the dataset or list structure of the current
setup to the server.

Data protocol http and https communication page 26 Date: 30.04.2024

ac2

dir
user
root
image [not yet impl.]

Transmits a list of files with absolute path infor-
mation currently stored inside the device memory.
The different files are separated by \r\n.

file
image

All [not yet impl.]

single

single,<image name> [not
yet impl.]

Send Image or big barcode content:

Send all files [not yet impl.]

The next file (in chronological order) is being send

The file with filename <image name> is being send.
[not yet impl.]

hip
--- [not yet implemented]

Transfers the device’s HIP data block to the server.
This data is transmitted encrypted.

language [not yet implemented]

network [not yet implemented]

Example:

df_send_file=/upload-form.html,flash,root:datafox.cert

df_send_file=/setup-storage-form.pl,setup

df_send_file=/fingerprint-backup-form.asp,finger,1980,all

df_send_file=/list-data-form.js,list,ac2,Identification

df_send_file=/device-logs-form.cgi,syslog

df_send_file=/list-desc/,structure,record

2.2.3.2.19. Remove a file stored on the device (df_remove_file)

With this function you may remove a file stored on the device. To erase a file, you will have to spec-
ify the file name as parameter.

Instruction Meaning

Path

Specifies the storage location of the file to be removed on the
device. The storage location has to start by „user:“ or
„root:“ and is followed by the file path / name.

Example:
 df_remove_file=root:datafox.cert

2.2.3.2.20. Delete fingerprint data from the device (df_remove_finger)

Data protocol http and https communication page 27 Date: 30.04.2024

To remove fingers from the built-in fingerprint sensor of the MasterIV-device, you may use the df_re-
move_finger command. You can choose to remove a single finger, all fingers of a person or all fin-
gers from the sensor.

The following instructions are available:

Instruction Meaning

df_remove_fin-
ger=<PID>,<FID>

Remove fingertemplate <FID> of person <PID>

df_remove_finger=<PID>,all Remove all fingertemplates of person <PID>

df_remove_finger=all Clear the entire module

Examples:

df_remove_finger=1980,all

df_remove_finger=1980,6 (Finger 6 is the thumb at the right-hand)

 Please note:
This function is available only for the optical finger print sensor „Saturn 01“.

2.2.3.2.21. Update of list data (df_setup_list or df_ac2_list)

The files of the lists are accessed using the same HOST name to which the request was made.

!

Danger:
The data provided for lists has to be sorted according to the criterion specified as
search condition in the setup with sort column. Access control lists are sorted in lexico-
graphical order based on the first column; other lists defined by the setup in lexicograph-
ical order according to their sort column.
List data supplied in a different sorting will be accepted by the client and will be handled
as unsorted data – which may result in long data access time.

Parameter name Meaning

Name Name of the list description.

Path

Path including file name of the file to be downloaded.

Example:
df_setup_list=HR,/path/to/liste.txt

oder
df_ac2_list=Identification,/path/to/liste.txt

Please be aware, that lists in the setup and the access control module may have the same names.
You have to select the right location, where the list is stored by the parameter name you are send-
ing.

Data protocol http and https communication page 28 Date: 30.04.2024

2.2.3.2.22. Count number of records within a table (df_table_count)

Returns the number of records stored inside a table. These values are differentiated into

- The total number of active table rows (rows, that are not marked as having been deleted),
- The number of lines added to the table without being sorted,
- The number of deleted lines.

Parameter name Meaning

Table/List name LIST.<name> or ACCESS.<name>

The result is sent as a KVP records (see 2.2.3.2.14) with following structure:

URL Description

http://<host>:<port>/<base-url>?

 df_api=1&

 df_type=kvp&
No data record – a key value pair is being
sent.

 kv=table,list.PID&
Name of the table for which statistical data is
being sent.

 kv=count,220& The table contains 220 active entries.

 kv=appended,12&
There are 12 rows that are appended to the
table.

 kv=deleted,18
Within the table there are 18 rows marked as
having been deleted.

!
Attention:
The performance for accessing a table’s data will deteriorate as more and more data is
either being deleted or appended in an unsorted way. If the access times are not good
enough anymore, consider reading the table’s data, sorting it and rewriting the table to
the device.

2.2.3.2.23. Select a row from a table (df_table_select)

This command allows retrieving list data – or a part thereof – and allows sending it to the server.

Parameter name Meaning

Table/List name LIST.<name> or ACCESS.<name>

Server path
Path on the server where the file containing the data is to be up-
loaded to.

Fist filter criterion <Column name>=<Value>

Data protocol http and https communication page 29 Date: 30.04.2024

Second filter criterion <Column name>=<Value>

Examples (the table PID consists out of four columns: PID, Name, Department (“Abteilung”), Date
(“Datum”):

df_table_select=list.PID,/upload/form

df_table_select=list.PID,/upload/form,Abteilung%3dEntwicklung

df_table_select=list.PID,/upload/form,Abteilung%3dEntwicklung,PID%3d5

Above selection provide

- all list entries from the PID table,

- all list entries where the Department is set to „Entwicklung“

- all list entries where the Department is set to „Entwicklung“ and the PID is 5

2.2.3.2.24. Append data to a table (df_table_append)

Append a single line to a table. For sorted table the entry is appended in an unsorted section of the
table. It is required to send all table fields as a comma separated list.

Parameter name Meaning

Table/List name LIST.<name> or ACCESS.<name>

Data records The data to be appended to the list.

Examples (the table PID consists out of four columns: PID, Name, Department (“Abteilung”), Date
(“Datum”):

df_table_append=list.PID,5,Sven%20Meyer,Entwicklung,

df_table_append=list.PID,9999,,Besucher,

The operation will be confirmed by sending a system message that informs on success or error
when appending the data row.

!
Attention:
The performance for accessing a table’s data will deteriorate as more and more data is
appended. If the access times are not good enough anymore, consider reading the ta-
ble’s data, sorting it and rewriting the table to the device.

2.2.3.2.25. Update a table (df_table_update)

Parameter name Meaning

Table/List name LIST.<name> or ACCESS.<name>

Data protocol http and https communication page 30 Date: 30.04.2024

Fist filter criterion <Column name>=<Value>

Second filter criterion <Column name>=<Value>

First column to be changed <Column name>=<Value> Values from maximally
4 columns may be
changed in this way.

Optional additional columns
to be changed

<Column name>=<Value>

Examples (the table PID consists out of four columns: PID, Name, Department (“Abteilung”), Date
(“Datum”):

df_table_update=list.PID,,,Abteilung%3d

df_table_update=list.PID,Abteilung%3dEntwicklung,,Abteilung%3dDevelop-

ment

df_table_update=list.PID,Abteilung%3dEntwicklung,PID%3d5,Datum%3d2019-

09-06T06:23:00

The first instruction clears the “Abteilung”-column from the PID table.

The second instruction changes the “Abteilung” column’s value to “Development” wherever the col-
umn contained “Entwicklung” previously.

The third instruction changes the “Datum” column’s value to 06:23:00 on September 6th 2019 for all
rows where PID column has the value 5. You may change the values of up to four columns by a sin-
gle df_table_update statement.

!

Attention:
The performance for accessing a table’s data will deteriorate as more and more data is
being deleted and appended. Internally the rows selected are marked as deleted and
new rows are appended to the table.
If the access times are not good enough anymore, consider reading the table’s data,
sorting it and rewriting the table to the device.

2.2.3.2.26. Delete data from a table (df_table_delete)

Parameter name Meaning

Table/List name LIST.<name> or ACCESS.<name>

Second filter criterion <Column name>=<Value>

First column to be changed <Column name>=<Value>

Examples (the table PID consists out of four columns: PID, Name, Department (“Abteilung”), Date
(“Datum”):

df_table_delete=list.PID

df_table_delete=list.PID,Abteilung%3dEntwicklung

df_table_delete=list.PID,Abteilung%3dEntwicklung,PID%3d5

Data protocol http and https communication page 31 Date: 30.04.2024

Similar to the df_table_select command, this command deletes the rows matched by the filter

criteria. Above examples delete

- All rows from the table PID,

- All rows from the table PID where the column „Abteilung“ contains the value „Entwicklung“

- All rows from the table PID where the column „Abteilung“ contains the value „Entwick-
lung“ and „PID“ contains the value „5“.

Please note:
Remove a row from a sorted list does not have a significant impact on the lookup per-
formance.

2.2.3.2.27. Firmware Update using https (df_load_firmware)
The command “df_load_firmware” is one of three ways that may be used to deploy a firmware up-
date using HTTP to a device (please check Appendix E).
In this process the server informs the device on the firmware package as well as the firmware file to
be downloaded.

Examples:

df_load_firmware=04.03.19.21.dfz,evo3.5_04.03.19.21.iff

df_load_firmware=04.03.19.21.dfz,evo_intera_II_49004_04.03.19.21.iff

The device creates an HTTP request for accessing the firmware update endpoint defined by the
system variables http.update.host, http.update.port und http.update.send. Depend-

ing on the device’s communication settings this request is using HTTP or HTTPS.

Example:
 GET https://update.host:443/update-server-send-path/04.03.19.21.dfz/evo3.5_04.03.19.21.iff

Please note:
The update server is now responsible to fetch and deliver the content of the re-
quested IFF file. This might be achieved by using a “standard” webserver that offers
access to the files from the extracted DFZ packages.

2.3. Feedback through System Messages

Independent of you using the DFCom interface or the http API, the device can inform you on the
outcome of actions.

The result is provided by means of system messages. This chapter shows the configuration of sys-
tem messages in the context of list data transfer.

System messages are configured in the section ‘signal processing’ of the setup.

Data protocol http and https communication page 32 Date: 30.04.2024

The assigned sequence of events triggers the creation of a data records at the device. These data
records are provided to your application.

Using the field function "System message: Accept value" you can select the data to be sent back to
the server.

Please note:
In order to identify the device sending the acknowledgment, you have various op-
tions.
Here is a small selection:

• In the event chain you can set the device name and the serial number of the
device as Id.

Data protocol http and https communication page 33 Date: 30.04.2024

• You can also provide a global variable on the response which is sent back as
the field value in the generated system messages. This way of creating a
session id, was also used in the above example.

Data protocol http and https communication page 34 Date: 30.04.2024

2.3.1. System messages to the list data download (feedback - records)

Some of the following system message values can occur via HTTP during the download of list data:

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

General results

0
100 (http) 1

http action completed successful,
e.g. List data has been applied.

- / - / -

1
100 2 Generic error

- / - / -

2
0 1 Most recent command was successful

- / - / -

3
0 2

The most recent server command contained unsuccess-
ful commands – for these individual system messages
are created.

- / - / -

List data processing

1001
100 2 Invalid parameter

- / - / -

1002
100 2 Unknown List

Unknown List / <List name> / <List type>

1003
100 2 Parameter missing

- / - / -

1004
100 2 Error in list line

<Details on the error> / <List name> / -

1005
100 2 List will be ignored (due to other errors)

- / - / -

1006
100 2 Duplicate list

- / - / -

1007 100 2
An update is currently pending. You list update therefor
cannot be applied (please retry later)
(obsolete, not used anymore)

Data protocol http and https communication page 35 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

- / - / -

1008
100 2

Encoding is not supported. With firmware 04.03.10.xx
only “ISO-8859-1” and binary encoding (missing encod-
ing chunk) are support.
(obsolete, not used anymore)

- / - / -

1009
100 2

The CRC inside of the transfer file is wrong. The index
of the FORM with the wrong CRC and the filename are
available through the status message.
(obsolete, not used anymore)

- / - / -

1010
100 2

The parameter is not supported for http upload yet. De-
tail 2 contains the parameter causing the problem.

Command unknown / <Parameter> / -

1011
100 1

The server requested update of access control lists, but
access control is deactivated

no access control / <List name> / <List typ>

1012
100 2

The IFF file to be uploaded could not be created. Detail
2 contains the name of the file requested by the server,
Detail 3 the temporary filename created to perform de-
livering the data.

<Detail1> / <Detail2> / <Detail3>

1013
100 2

The parameters supplied are invalid. Detail 1 contains a
detailed description, Detail 2 and 3 may contain the of-
fending parameters.

<Detail1> / <Detail2> / <Detail3>

1014
100 1

A file upload request has been received and is being
processed. Detail 2 contains the request details.

Received an upload request / <File type> / -

1015
100 2 Error during upload of the IFF file.

HTTP-Upload failed. Could not connect to server / <file name> / <path>

1016
100 1

File has been transferred successfully to the server, the
server acknowledged the last chunk sent.

HTTP-Upload finished - response ok / <file name> / <path>

1017 100 2
File has been transferred successfully to the server. The
server did not acknowledge the last chunk sent.

Data protocol http and https communication page 36 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

In order to acknowledge the upload, the server shall
send HTTP status code 200 and an empty body.

HTTP-Upload finished - response error / <file name> / <path>

1018
100 2 During an update no other update can be processed.

Update already in progress / - / -

1019
100 2 List type is unknown.

There are no lists with this type / <List name> / <Type>

1020
100 2 List (name) is unknown.

Unkown list / <List name> / <Type>

1021
100 2 Fingerprint, PID invalid.

Error reading PID / <PID> / -

1022
100 2 Fingerprint, FID invalid.

Error reading FID / <FID> / -

1023
100 1 File download was successful.

Download ok / <file name> / <path>

1024
100 2 Error during file download.

Download error / <file name> / <path>

1025
100 1 An IFF file has been scheduled to be uploaded.

IFF-file added to upload / <Filename> / <Path>

1026
100 2 Insufficient memory for processing the request.

- / - / -

1027
100 2

No setup is run by the device currently.

Please Note: The device received a df_send_file re-

quest to send the setup to the server. The device cannot
fulfil this request, since the device was not transferred
using http.

No valid setup / - / -

1030
100 1

File download successful.
(obsolete, not used anymore)

HTTP-Download OK / <Name> / <Path>

1031 100 2
File download failed.
(obsolete, not used anymore)

Data protocol http and https communication page 37 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

HTTP-Download Error / <Name> / <Path>

1032
100 2 List data transfer: Too many columns in row.

Line <LineNo> / <Data> / <Error code>

1033
100 2 List data transfer: Not enough columns in row.

Line <LineNo> / <Data> / <Error code>

1034
100 2

List data transfer: Column content too large to fit into list
record.

Line <LineNo> / <Data> / <Error code>

1035
100 2

List data transfer: Odd number of data bytes while trans-
ferring HEX ASCII data.

Line <LineNo> / <Data> / <Error code>

1036
100 2

List data transfer: Transfer of HEX ASCII data contained
an invalid character (that is non HEX ASCII)

Line <LineNo> / <Data> / <Error code>

1037
100 2

List data transfer: Sending access control lists to device
with disabled access control module has been ignored.

Ignore access list / <Name> / -

1038
100 2 No setup file present at the device.

- / - / -

1039
100 2 Http header too large

http Header too large / <headerSize> / <maxSize>

Processing IFF files

1500
150 1

Setup uploaded to the device successfully.

Please note: This system message is created using the
new setup – provided, system messages are activated
there.

Setup installed / <Name des Setups> / -

1501
150 2

Error while reading data. Detailed information is sup-
plied as Detail 1 and 2.

<Error description> / <Details concerning the error> / -

1502
150 2

Error while writing data. Detailed information is supplied
as Details 1 and 2.

<Error description> / <Details concerning the error> / -

Data protocol http and https communication page 38 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

1503
150 2 The setup does not match the type of the device.

AES file not valid on this device / <Device Type Name> / -

1504
150 2 Error while checking the IFF’s CRC

<Type of the IFF file> / - / -

1505
150 2 Version of IFF file is not supported

<Type of the IFF file> / - / -

1506
150 2

The selected encoding is not supported by the device
firmware

<Type of the IFF file> / - / -

1507
150 2 Wrong encoding of IFF file

<Type of the IFF file> / - / -

1508
150 2 Error saving IFF file (while creating)

<Type of the IFF file> / - / -

Routing

1800
180 1 Entry to be applied found

Routing destination found / <Name of routing file> / <Address addition>

1801
180 1 Entry to be relayed found

Routing forward file / <Name of routing file> / <Received Address>

1802
180 1 Routing file received

Routing info received / <Name of routing file> / -

1803
180 1

Entries left to be processed, which have not been pro-
cessed yet

Routing entries left / <Name of routing file> / -

1804
180 1 Routine file completely processed. File will be deleted.

Routing finished / <Name of routing file> / -

1805
180 2 No valid entry found. File will be deleted.

No valid entry / <Name of routing file> / -

1806
180 2 Routing file could not be applied

Update failed / <Name of routing file> / <Address addition>

1807
180 2 Error while relaying

Forwarding failed / <Name of routing file> / <Received Address>

Data protocol http and https communication page 39 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

Fingerprint

2001

200 2 Error while reading fingerprint templates

- / - / -

2002
200 2 Error while writing fingerprint templates

- / - / -

2003
200 2 Error while erasing a fingerprint template

Error deleting template / - / -

2004
200 1 Fingerprint template enrolled at sensor

<PID> / <FID> / <Qualität>

2005
200 1 Fingerprint template optimized by sensor

<PID> / <FID> / -

2006
200 1 Fingerprint template added to sensor

<PID> / <FID> / -

2007
200 1 Fingerprint template removed from sensor

<PID> / <FID> / -

2008
200 1

All fingerprint template of specified PID have been re-
moved

<PID> / - / -

2009
200 1 All fingerprint templates have been removed

- / - / -

2010
200 2 Fingerprint is not available.

Fingerprint is not available / - / -

2011
200 2 Incompatible template types in device and IFF file

Bad Template Type / <Template Type Device> / <Template Type IFF>

Filesystem

2500
250 1 File removed successfully.

File successfully deleted / <file name> / -

2501
250 2 File not found.

File not found / <file name> / -

2502 250 2
Unknown partition / storage location
(obsolete, this code was generate up to 04.03.13)

Data protocol http and https communication page 40 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

- / - / -

2503
250 2 Error while removing the file.

Error while deleting the file / <file name> / -

Table Manipulation

3000
300 2

Opening a list to access if with append, update or delete
failed.

Error opening the list / <List name> / -

3001
300 2 Error while adding a data record to an existing list.

Error adding list data / <Data > / -

3002
300 2

The filter could not be applied during update or delete
command.

List selection not possible / <List name> / -

3003
300 2 Error in parameters of select or update command.

Parameter missing / <List name> / -

3004
300 2 Error deleting an entire list.

Error deleting the entire list / <List name> / -

3005
300 2 Internal Error accessing flash memory

Memory error / - / -

3006
300 1

List data has been sent to the device, that is not sorted
according the setup’s sort criterion.
This will result in a performance impact with long lists.

Unsorted List Data / <List name> / <Line number>

Firmware-Update using HTTP(S)

3500
350 1 Update successful

FW update success / <New Firmware Version> / <opt. Branch-Name>

3501

350 2 Download of update data failed

Server request failed / <Parameters of df_update_firmware> / <http.up-

date.send>

3502

350 2
Update-Server reports error processing the update in-
structions.

<Parameters of df_update_firmware> / <http.update.send> / <Errorcode

reported by the Update-Server>

Data protocol http and https communication page 41 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

3503
350 2

Firmware does not support a hardware module built into
the device.

Module not supported / <Module Id> <Index> / <Name of Module>

3504
350 2 Firmware for different device

Invalid device type / <Device Type ID> / <Device-Type ID from IFF file>

Firmware-Update using HTTP(S) / Availablility-µS

3800
380 1 Firmware version is available

<Name of DFZ-file> / - / -

3801
380 2

The query sent to the availability service is not sup-
ported.

unsupported query mode / - / -

3802
380 2 No firmware found

no match / - / -

3803
380 2 Internal error while processing the query.

internal error / - / -

Firmware-Update using HTTP(S) / Compatibility-µS

3900
390 1 Device is compatible with firmware

<Name of DFZ file> / <Name of IFF file> / -

3901
390 2 Unknown parameter when calling the service

unhandled parameter / <Parameter> / -

3902
390 2 The query did not contain a device type

device type missing / - / -

3903
390 2 The query did not contain a serial number

serial number missing / - / -

3904
390 2 The query did not contain a board version

board missing / - / -

3905
390 2

The query did not contain a firmware version to be
checked

no firmware version specified / - / -

3906
390 2 The query did not contain hardware modules

no hardware modules specified / - / -

Data protocol http and https communication page 42 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

3907
390 2

There is no MD5 fingerprint associated to the firmware
version on the server

md5 fingerprint missing / - / -

3908
390 2

The MD5 fingerprint associated to the firmware on the
server and the one supplied by the query mismatch.

md5 fingerprint wrong / - / -

3909
390 2

There is no directory containing the uncompressed firm-
ware files

directory open error / - / -

3910
390 2

There is no firmware IFF file associated to the device
type.

no iff file found / - / -

3911
390 2

The Firmware IFF file’s COMP chunk has a version dif-
ferent from 2 – and thus unsupported.

no acceptable compatibility info / - / -

3912
390 2

The Aux-Chunk (FAUX) of the firmware IFF file has an
unsupported version different from 1.

no acceptable aux info / - / -

3913
390 2

The device type id from the query does not match with a
compatible device type id from the firmware IFF file.

device type mismatch / - / -

3914
390 2

A hardware module being part of the device is not sup-
ported by the firmware.

unsupported hardware / <fw-idx>,<version>[,<place>] / -

3915
390 2

The directory specified to contain firmware data does
not exist.

firmware directory not existing / <Directory> / -

3916
390 2

Firmware Update did not manage to determine the
CPU.

failed to derive MPU / <Device-Type-Id> / -

Change Date / Time

4000
400 1 Date / Time has been changed successfully.

Time changed / <Date/Tme> / -

4001 400 2 Format error in time passed

Data protocol http and https communication page 43 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

Format error / <Date/Time> / -

4002
400 2 Internal error while setting date and time on the device.

Internal error / - / -

Setting system variables

4500
450 1 The system variable has been set successfully

Variable changed / <Name>=<Wert> / -

4501
450 2 Error while setting the system variable

Error when setting the variable / <Name>=<Value> / <Error code>

4502
450 2 Error while reading a variable

read error / <Request> / -

4503
450 2 Error while reading a variable

missing parameter / <Request> / -

Setting Relays

5000
500 1 The relay has been set

Relais switched / <Parameter> / -

5001
500 2 At least one parameter is invalid

Parameter error / <Parameter> / -

5002
500 2 Not enough parameters were supplied

Parameter missing / - / -

5003
500 1 Das Relais wurde erfolgreich umgeschaltet.

Relais toggled / <Parameter> / -

Messages (to be shown on the device’s display)

5500
500 1 A message has been received.

Message received / <Message Text> / -

5501
500 2

An online data record has been set but the server did
not send a message in response.

Message missing / - / -

5502
500 2

The message is not shown on the display – a different
message is being displayed currently.

Message ignored / <Parameter> / -

5503 500 1 An info message has been received.

Data protocol http and https communication page 44 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

Info message received / - / -

5504
500 2

The setup is not configured with “Server Online”. Thus,
not messages may be displayed.

Online message disabled / - / -

5505
500 2

The record to which the df_msg command was sent,
was not an online record.

Non Online Record / - / -

5509
500 2

The IFF file does not contains data, that may be used b
the device.

No applicable data found / <filename> / -

5510
500 1 df_msg_icon applied

Message icon set / <Filename of Icon> / -

5511
500 2

The image file associate to the icon is not present on
the device

Image not found / <filename> / -

5512
500 1

The Buzzer code is invalid. The message is displayed
without buzzer notification.

Buzzer invalid / <buzzer> / -

5513
500 2

The font size supplied is invalid. The message is shown
with standard font size.

Font invalid / / -

Audio signal

6000
600 1 Audio signal code is known and being played

Play Sound Sequence / <Seq.No.> / -

6001
600 2 Unknown signal code

Unknown Sound Sequence / <Seq.No.> / -

Input chain

6500
650 1 An event chain is being executed

Execute event chain / <event chain name > / -

6501
650 2

Unknown event chain sent by web server. Cannot exe-
cute.

Unknown event chain / <event chain name> / -

Service mode

Data protocol http and https communication page 45 Date: 30.04.2024

Reason
Group Type Description

Detail 1 / Detail 2 / Detail 3

7000
700 1 Service mode has been established successfully

Service connection established / <Host:Port> / 0

7001
700 2 Failed starting the service mode.

Service connection could not be established / <Host:Port> / <Err-Code>

Control of Backlights

7500
750 1 The backlight has been configured accordingly.

Backlight set / <Backlight-Id> / -

7501
750 2 Backlight of supplied Id is unknown.

Unknown backlight / <Backlight-Id> / -

The following encodings are being used:

Type:
 1: Info – Command has been processed successfully
 2: Error

Reason:
 Description of the operation

Group:
 100 http module
 150 IFF-Processing
 180 Routing
 200 Fingerprint system
 250 File system
 300 List-/Table Operations
 350 Firmware-Update via HTTP
 380 µService Firmware Availability
 390 µService Firmware Compatibility
 400 Change of Date/Time
 450 Changing system variables
 500 Switching relays
 550 Processing messages to be shown on the display
 600 Audio signaling
 650 Input chain processing
 700 Service mode
 750 Backlight control

A result dataset for uploading the AC list „Action“ successfully to the device will look as follows:

URL-Teile Bemerkung

http://<host>:<port>/<base-url>?

 df_api=1&

Data protocol http and https communication page 46 Date: 30.04.2024

 df_table=Feedback&

 df_col_dt=2017-03-30T13:11:06&

 df_col_type=1& Type Info

 df_col_group=100& Module / Group information

 df_col_cause=0& No error

 df_col_par1=action, 4 lines& Information on the data

 df_col_par2=Action& Name of the list being updated

 df_col_par3=

The field df_col_par3 is reserved for future use.

2.3.2. Associating command and system messages

Since processing in the HTTP interface is asynchronous, the server may transmit an “df-action-id”
along with its response. Processing the response will result in creating system message which will
contain the action id – thus they can be associated to the trigger.

In order to active the “action id” for a command, the server puts a “df-action-id” header into its HTTP
response. The associated value may be up to 16 characters long (e.g., “A39ID”)

The device picks up the action id and sends it along with the resulting system messages – as
header field – and adds a sequence number (“df-command-index”). The command index starts at 0
for “df_api=1”, the first command is associated to index 1 accordingly.

Header associate to a system message

The following responses do not contain action id or command index:

• 1013: “Invalid sign” message on parser error

• 20xx: Messages from the fingerprint subsystem triggered by http actions

• 3500: Firmware update confirmation message

• Messages from the access control subsystem

2.4. Encryption

!

Attention:
In the context of API-Level 1 on Hardware 4 devices, the encryption described in this
section should not be used – with HTTPS there is a stronger protocol based on stand-
ardized technology available.

Data protocol http and https communication page 47 Date: 30.04.2024

The data fields of the data set can be encrypted using a stream cipher RC4. The field contents are
then transferred to their hexadecimal representation.

parameter name importance

df_cb

The parameter specifies that all these fields until and including
df_ce have encrypted field contents. The value of df_cb contains the
four-digit (1000-9999) public key of the applicable password for the
stream cipher.

df_ce
The parameter indicates that all the following fields are not en-
crypted any more. If the value is decrypted correctly it must match
the value of df_cb.

2.4.1. Illustrate the GET request

In plain text (unencrypted) and encrypted:

Plaintext request

df_api=1&df_record_state=1&df_table=Book-
ing&df_col_sn=2042&df_col_recordtype=1&df_col_badge=3974679390&df_col_timestamp=2017
-11-22T08:23:39&df_col_status=online

Plaintext Reply

df_api=1&df_time=2017-11-22T08:24:00

Encrypted request

df_api=1&df_cb=6102&df_re-
cord_state=CC&df_table=66E9B37516AA8C&df_col_sn=0BDC8F79&df_col_record-
type=AB&df_col_badge=AF9B3A929994A5BD7D88&df_col_ti-
mestamp=B237B8CA4FA80FD563359C3EE70FE7FC99AF60&df_col_sta-
tus=9BACFC1E5E0B&df_ce=A344D33B

encrypted response

df_api=1&df_cb=6102&df_time=e1ba6575855619c4d634f7865c01c4b2bc2ec138670ac2&df_ce=
a414ebd6

2.4.2. Detection of encryption

To see whether the data fields are sent encrypted, the initial encryption is with ‘df_cb’ (Datafox Crypt
Begin) in and with ‘df_ce’ (Datafox crypt end) in the end. ‘df_cb’ the first field in the request and
‘df_ce’ the last field in the request is.

The value of the field ‘df_cb’, itself is transmitted in plain text and is ‘public key’. It is a random num-
ber between 1000 and 9999. The value must be used in conjunction with the communication pass-
word for the encryption and decryption.

The encryption of data is thus effected by "private key + public key" as a password key.

In response, the field ‘df_cb’ must be send back with the identical value received with the request.
This ensures that the decryption was successful and request and response also fit.

Data protocol http and https communication page 48 Date: 30.04.2024

The value of the field ‘df_ce’ is identical to ‘df_cb’ but it is sent encryptedly. While decoding you can
verify that the right key has been used. The value of ‘df_ce’ must match ‘df_cb’ after decryption is
done.

If there are problems in deciphering ‘df_c=error’ has to set in the response. In addition, the fields
‘df_cb’ and ‘df_ce’ are to be filled with information as follows.

The following errors are to be observed by the evaluating script:

‘df_cb’ is not a number or is outside of its value limit of 1000 - 9999

• Answer: df_c=error&df_cb=range&df_ce=unknown/missing
o Range describes a range error – the value is outside its limits.
o Unknown describes an unchecked condition.
o Missing identifies a missing field in the request.

‘df_cb’ without final ‘df_ce’

• Answer: df_c=error&df_cb=1000&df_ce=missing

‘df_ce’ is not a number or is outside of its value limit of 1000 - 9999

• Answer: df_c=error&df_cb=1000&df_ce=range

‘df_ce’ without incipient ‘df_cb’

• Answer: df_c=error&df_cb=missing&df_ce=unknown

‘df_ce’ is not equal ‘df_cb’

• Answer: df_c=error&df_cb=1000&df_ce=different
o ‘df_ce’ (after decoding) is not equal to ‘df_cb’.

2.4.3. Response from the web server

The field contents from the request are sequentially decrypted using the RC4 stream cipher. The
field contents of the reply is to be seen as part of the entire data stream and thus encrypted using
the same RC4 stream cipher instance used for the decryption. The only exception is the first field
value ‘dfcb’, that is identical to the one supplied by the request.
The last encrypted field of the reply has to be the ‘dfce’ field. The value of ‘dfce’ must be (after de-
cryption) equal to the value of ‘dfcb’.

2.4.4. Buffer sizes

The Terminals provide buffers for incoming data. These buffers are sized according to the following
table (04.03.10.05):

Field Buffer size

http Header 1500 Bytes

http Body 2000 Bytes

Please keep in mind, that data is truncated if exceeding the buffer’s size. Typically, when using
cookies, which are not processed at all by the device, the header buffer can reach its limit quickly.

Data protocol http and https communication page 49 Date: 30.04.2024

Data protocol http and https communication page 50 Date: 30.04.2024

Appendix A: Mapping of Communcation Libarary and Datafox Studio to HTTP Level 1

This appendix compares function provided by the communication library with those provided by the HTTP Level 1 API. Since HTTP is comparable
to active mode, functions explicitly for passive mode may not be usable in this context.

Legend

!

Attention:

Setup files may be transferred using communication library or http
from server to the device. The transfer from device to the server
can only be done using the same means of communication. It is not
possible to write a setup using the DLL and read it back using
HTTP.

Available

Planned for release

Planned for a future release – no version fixed yet

Not planned – see comment.

A.1: Comparison of communication library and HTTP Level 1

Description of function (Communication library docu-
mentation)

Communication library function name HTTP State / Plan

Setup serial or TCP/IP connection for MasterIV DFCComOpenIV Not required – the device initiates the connection ---

Close a previously openend interface DFCComClose Not required – the device initiates the connection ---

Check device reachability DFCCheckAE Not required – the device initiates the connection ---

Check device reachability DFCCheckDevice Not required – the device initiates the connection ---

Set device date and time. DFCComSetTime df_time (2.2.3.2) 04.03.10.00

Read device date and time. DFCComGetTime df_kvp=time 04.03.12.01

Send a message to be displayed. DFCComSendMessage df_msg (2.2.3.2.6) 04.03.10.01

Send a background message. DFCComSendInfotext df_info_msg (analog df_msg, siehe 2.2.3.2.9) 04.03.12.01

Read serial number DFCGetSeriennummer df_kvp=serialnumber 04.03.12.01

DFCLogOn: Do not use. DFCLogOn (obsolete) Will not be implemented. ---

Data protocol http and https communication page 51 Date: 30.04.2024

DFCSetLogOn: Enable logging. DFCSetLogOn (obsolete) Will not be implemented. ---

DFCLogOff: Do not use. DFCLogOff (obsolete) Will not be implemented. ---

DFCSetLogOff: Disable logging. DFCSetLogOff (obsolete) Will not be implemented. ---

Set the callback function. DFCSetCallBack Realized by http server. ---

DFCSetLogFileName: Set name of logfile. DFCSetLogFileName (obsolete) Will not be implemented. ---

Convert error number to error text. DFCGetErrorText See system messages (2.3.1) 04.03.10.03

Set a global variable. DFCSetGlobVar df_var (for global, setup and system variables) 04.03.10.01

Read a global variable. DFCGetGlobVar df_kvp=var,<VAR_NAME> 04.03.12.01

Close a relay for a specific time DFCCloseRelay df_set_relay=<RELAIS_ID>,close,duration 04.03.12.01

Get the state of a relay. DFCGetRelayState df_kvp=relais,<RELAIS_ID> 04.03.12.01

Open a relay.. DFCOpenRelay df_set_relay=<RELAIS_ID>,open,duration 04.03.12.01

Toggle a relay. --- df_toggle_relay=<RELAIS_ID>,duration 04.03.12.01

Configure communication retries DFCGetDevicePollRetry Will not be implemented. ---

Query the device handle DFCGetComPort Will not be implemented. ---

Set the device handle. DFCSetComPort Will not be implemented. ---

Raw write to a channel DFCWrite Will not be implemented. ---

Raw read from a channel DFCRead Will not be implemented. ---

Send firmware file to a device. DFCUpload

Transfer file of type 0xDF01 (Firmware)

df_load_file=<PATH ON SRV>

Please see Appendix E.

04.03.20.01

Read the version of the firmware running on a device.. DFCGetVersionFirmware df_kvp=firmwareversion 04.03.12.01

Read the version of the firmware file DFCGetVersionFirmwareFromFile Impossible using http. ---

Query information about a module. DFCGetInfo Will not be implemented. ---

Activate transparent mode. DFCOpenComServerMode Impossible using http. ---

Deactivate transparent mode. DFCCloseComServerMode Impossible using http. ---

Data protocol http and https communication page 52 Date: 30.04.2024

Check if a channel is currently opened. DFCIsChannelOpen Impossible using http. ---

Update of a module. DFCUploadModule
Transfer file of types 0xDF011 - 0xDF16 (RS9100, Biokey
3000/4000/4020, Saturn 01, U&Z Radio Base)

df_load_file=<PATH ON SRV>

04.03.12.03

Read firmware options. DFCGetOptionFirmware Not scheduled yet. ---

Write firmware options DFCSetOptionFirmware Not scheduled yet. ---

Reset a device. DFCReset May be triggered by setting the (temporary) system variable
through df_var=system.reset,1.

04.03.20.01

Set font for SendMessage and SendInfotext. DFCSetFontType Implemented through df_msg (2.2.3.2.6) and df_info_msg
(2.2.3.2.9)

04.03.10.01

Set access password for device. DFCSetPassword Not planned, security is part of https. 04.03.11.00

Query failover key. DFCGetPasswordKey Will not be implemented. ---

Start a chain on the device (F1 - F15) DFCPressVirtualKey df_ek (see 2.2.3.2.5) 04.03.10.00

Retrieve current flash state DFCGetFlashStatus
df_kvp=flashstate

Note: This will only send information on the flash’s partitioning,
not the wear level details.

04.03.12.01

Set the channel’s communication key DFCSetCommunicationPassword
A communication password is not usable in http context.

Security is achieved by using https.

Get information on the device’s hardware DFCReadHardwareInfo
Transfer file of type 0xDF10

df_send_file=<PATH ON SRV>,hip
04.03.xx.xx

Send file’s content from the PC to the device. DFCFileUpload

Please use a specialized function (df_setup_list or df_ac_list) it
applicable. If no such function is available and no special func-
tion is linked to the file, you may use

df_fs_load=root/user:<FILENAME ON DEVICE>,<PATH ON
SRV>

04.03.12.01

Send file content from the device to the PC. DFCFileDownload df_send_file=<PATH ON SRV>,flash,root/user:<File1>… 04.03.12.01

Return most recently encountered error number. DFCGetLastErrorNumber Not possible using http ---

Send setup file to the device. DFCSetupLaden

Transfer file of type 0xDF02 (Setup file)

df_load_file=<PATH ON SRV>

Note: The device creates a copy when being sent a setup.

04.03.12.01

Data protocol http and https communication page 53 Date: 30.04.2024

Read setup file from the device. DFCDownload
df_send_file=<PATH ON SRV>,setup

Note: Sends a copy of the setup. A setup sent through the com-
munication library may not be read back using this function.

04.03.12.01

Modify content of the setup. DFCModifyStudioFile Not planned. ---

Open a list on the device. DFCOpenTable (obsolete, use DFCTableOpen) Will not be implemented. ---

Close a list on the device. DFCCloseTable (obsolete, use DFCTableClose) Will not be implemented. ---

Set the list filter. DFCSetFilter (obsolete, use DFCTableSetFilter) Will not be implemented. ---

Retrieve the current list filter. DFCGetFilter (obsolete, use DFCTableGetFilter) Will not be implemented. ---

Remove the list filter. DFCClearFilter (obsolete, use DFCTableRemoveFilter) Will not be implemented. ---

Move the windows pointer on the list. DFCSkip (obsolete, use DFCTableSetCurrentRow) Will not be implemented. ---

Modify the value of a field.
DFCSetField (obsolete, use DFCTableSetCurrentCo-
lumnData) Will not be implemented. ---

Read the value of a file.
DFCGetField (obsolete, use DFCTableGetCurrentCo-
lumnData) Will not be implemented. ---

Open a list on the device. DFCTableOpen Will not be implemented. ---

Close a list DFCTableClose Will not be implemented. ---

Set the filter for a column. DFCTableSetFilter Will not be implemented explicitly, is implicit part of df_table_se-
lect, df_table_update and df_table_delete.

Read the current filter. DFCTableGetFilter Will not be implemented, see DFCTableSetFilter ---

Remove the current filter DFCTableRemoveFilter Will not be implemented, see DFCTableSetFilter ---

Get the number of rows of the list. DFCTableGetRowCount df_table_count 04.03.15.01

Get the current line number of the window pointer. DFCTableGetCurrentRow Will not be implemented – please use filter criterion and df_ta-
ble_select.

Move the current window pointer for the list DFCTableSetCurrentRow Will not be implemented ---

Overwrite current row in the list. DFCTableSetCurrentRowData Will not be implemented – please use filter criterion and df_ta-
ble_update.

Overwrite a column’s value in the current row of the list. DFCTableSetCurrentColumnData Will not be implemented – please use filter criterion and df_ta-
ble_update.

Set a column’s value for all rows matching the current fil-
ter.

DFCTableSetAllRowsToColumnData df_table_update 04.03.15.01

Data protocol http and https communication page 54 Date: 30.04.2024

Read the current row. DFCTableGetCurrentRowData Will not be implemented – please use filter criterion and df_ta-
ble_select.

Read a column from the current row. DFCTableGetCurrentColumnData Will not be implemented – please use filter criterion and df_ta-
ble_select.

Append a row to the list. DFCTableAppendRowData df_table_append 04.03.15.01

Remove the current row from the list.. DFCTableDeleteCurrentRow Will not be implemented – please use filter criterion and df_ta-
ble_delete.

Remove all rows from the list matchin the current filter. DFCTableDeleteAvailableRows df_table_delete 04.03.15.01

Erase all datasets from the device. DFCComClearData Not scheduled yet. ---

Start collection of device datasets
DFCComCollectData (obsolete, use DFCReadRecord,
DFCQuitRecord) The device transmits data actively. 04.03.12.01

Retrieve a dataset from the device.
DFCComGetDatensatz (obsolete, use DFCRea-
dRecord, DFCQuitRecord) The device transmits data actively. 04.03.12.01

Read dataset description from the device. DFCLoadDatensatzbeschreibung df_send_file=<PATH ON SRV>,structure,datasets 04.03.12.06

Compute the number of dataset descriptions. DFCDatBCnt df_send_file=<PATH ON SRV>,structure,datasets 04.03.12.06

Retrieve base information on dataset. DFCDatBDatensatz df_send_file=<PATH ON SRV>,structure,datasets 04.03.12.06

Retrieve base information on a dataset’s field.

DFCDatBFeld df_send_file=<PATH ON SRV>,structure,datasets 04.03.12.06

Read next dataset stored on the device. DFCReadRecord Not required – the device sends the dataset automatically. 04.03.10.00

Acknowledge most recently read dataset (it will be re-
moved from the device then)

DFCQuitRecord df_api=1 in the server’s response. 04.03.10.00

Restore datasets on the device. DFCRestoreRecords Not scheduled yet. ---

Import raw list data into the DLL. DFCMakeListe Not necessary. ---

Upload imported list data to the device. DFCLoadListen df_setup_list oder df_ac2_list (2.2.3.2.21) 04.03.10.01

Clear list data from imported lists. DFCClrListenBuffer Not necessary. ---

Retrieve list data definitions from the device. DFCLoadListenbeschreibung df_send_file=<PATH ON SRV>,structure,lists 04.03.12.06

Compute the number of list definitions. DFCListBCnt df_send_file=<PATH ON SRV>,structure,lists 04.03.12.06

Retrieve base information on a list DFCListBDatensatz df_send_file=<PATH ON SRV>,structure,lists 04.03.12.06

Retrieve base information on a list’s field. DFCListBFeld df_send_file=<PATH ON SRV>,structure,lists 04.03.12.06

Import raw list data into the DLL. DFCMakeEntranceList Not necessary. ---

Data protocol http and https communication page 55 Date: 30.04.2024

Upload imported list data to the device. DFCLoadEntranceList df_setup_list or df_ac2_list (2.2.3.2.21) 04.03.10.01

Clear list data from imported lists. DFCClearEntranceListBuffer Not necessary. ---

Import raw list data into the DLL. DFCMakeEntrance2List Not necessary. ---

Upload imported list data to the device. DFCLoadEntrance2List df_setup_list or df_ac2_list (2.2.3.2.21) 04.03.10.01

Clear list data from imported lists. DFCClearEntrance2ListBuffer Not necessary. ---

Trigger access control virtually
DFCEntrance2Identification (obsolete, use DFCAcces-
sControlIdentification) Will not be implemented, see df_trigger_ac2 (2.2.3.2.13) ---

Call an access control module.
DFCEntrance2OnlineAction (obsolete, use DFCAcces-
sControlOnlineAction) Will not be implemented. ---

Trigger access control virtually DFCAccessControlIdentification df_trigger_ac2=<Reader-ID>,<Transponder-ID> 04.03.12.06

Call an access control module. DFCAccessControlOnlineAction df_ac2 (see 2.2.3.2.10) 04.03.10.01

Append a fingerprint template to the device’s sensor
DFCFingerprintAppendRecord / DFCFingerprintRes-
tore

Transfer file of type 0xDF18

df_load_file=<PATH ON SRV>

Note: The fingerprint data from the file is integrated into the fin-
gerprint modules content. If the module contains a finger with the
same PID and FID as contained in the file, the fingertemplate in
the module is replaced by that from the file.

04.03.12.05 (opti-
cal sensor)

04.03.15.08 (line
sensor)

Retrieve a fingerprint template from the device’s sensor DFCFingerprintGetRecord / DFCFingerprintBackup

df_send_file=<PATH ON SRV>,finger,<PID>,<FID> or

df_send_file=<PATH ON SRV>,finger,<PID>,all or

df_send_file=<PATH ON SRV>,finger,all

Creates a transfer file of type 0xDF18

04.03.12.05 (opti-
cal sensor)

04.03.15.08 (line
sensor

Clear the fingerprint templates from the device’s sensor. DFCFingerprintDeleteRecord

df_remove_finger=<PID>,<FID> or

df_remove_finger=<PID>,all or

df_remove_finger=all

04.03.12.05 (opti-
cal sensor)

04.03.15.08 (line
sensor

Create a list of PID,FID pairs contained in the device’s
sensor

DFCFingerprintList Not necessary. ---

Import raw data for a timeboy’s list. DFCMakeTimeboyList Not scheduled yet. 04.03.xx.xx

Upload imported list data to a timeboy. DFCLoadTimeboyList Not scheduled yet. 04.03.xx.xx

Data protocol http and https communication page 56 Date: 30.04.2024

Clear the timeboy list data. DFCClearTimeboyListBuffer Not scheduled yet. 04.03.xx.xx

Start active mode server. DFCStartActiveConnection Realized by http server. ---

Shut the active mode server down. DFCStopActiveConnection Realized by http server. ---

Compute the ID of the first device connected to the active
mode server.

DFCGetFirstActiveChannelID Not necessary – the device establishes the connection. ---

Compute the ID of the next device connected to the active
mode server.

DFCGetNextActiveChannelID Not necessary – the device establishes the connection. ---

Collect information associated to an active mode channel. DFCGetInfoActiveChannel Not necessary – the device establishes the connection. ---

Activate or deactivate the information on „available da-
tasets”

DFCSetRecordAvailable Not necessary – the device establishes the connection. ---

Access the queue for „available datasets“. DFCRecordAvailable Not necessary – the device establishes the connection. ---

Associate a device to a channel number. DFCBindDeviceToChannel Nicht erforderlich – das Gerät baut die Verbindung auf. ---

Configure block types where the transfer may be inter-
rupted.

DFCBlockTransferSetDuration Not reasonable for http data transfer. ---

Resume the block transfer. DFCBlockTransferResume Not reasonable for http data transfer. ---

Compute the current type and state of block transfer. DFCBlockTransferGetState Not reasonable for http data transfer. ---

Discard the currently pending block transfer. DFCBlockTransferDiscard Not reasonable for http data transfer. ---

Information on success or failure of an http action is supplied through system messages.

A.2: Comparison of Datafox Studio and http Level 1

Function in the Datafox Studio Direction Function in http Level 1 State / Plan

Upload of device firmware -> Device

- Web-Server sends request for the firmware update to the device

- The device sends its firmware version to the web server.

- Webserver checks, which firmware file to provide and sends the download URL to the device

- The device downloads a firmware transfer file type 0xDF01

04.03.20.01

Upload of device setup -> Device Device loads transfer file type 0xDF02 04.03.12.01

Download of device setup -> Studio df_send_file=<PATH ON SRV>,setup, transfer file type 0xDF0C (2.2.3.2.18) 04.03.12.01

Data protocol http and https communication page 57 Date: 30.04.2024

Upload of setup list data -> Device df_setup_list (2.2.3.2.21) [0xDF03] 04.03.10.01

Upload of access control lists data -> Device df_ac2_list (2.2.3.2.21) [0xDF04] 04.03.10.01

Upload of Timeboy list data -> Device Transfer file type 0xDF05 04.03.xx.xx

Retrieve and delete datasets -> Studio Datasets are actively sent by the device. 04.03.10.00

Read camera pictures -> Studio
Device sends new images using a standard web upload form using transfer file type 0xDF06. The upload
path is specified by the system variable COM.HTTP_MODE[.].SEND_IFF.

04.03.18.04

Read serial number -> Studio df_kvp=serialnumber (2.2.3.2.14) 04.03.12.01

Set device clock -> Device df_time (2.2.3.2) 04.03.10.00

Send a message -> Device df_msg (2.2.3.2.6) 04.03.10.01

Read a global variable -> Studio df_kvp=var,<VAR_NAME> (2.2.3.2.14) 04.03.12.01

Upload a language file to the device -> Device Transfer file type 0xDF07 04.03.18.04

Upload a color map to the TimeboyIV -> Device Transfer file type 0xDF08 04.03.xx.xx

Upload a LAN/WLAN configuration to the device -> Device Transfer file type 0xDF09 04.03.xx.xx

Upload a touch configuration (EVO 4.3) to the device -> Device Transfer file type 0xDF0F 04.03.xx.xx

Upload a display design to the device -> Device
Transfer file with images (BMP) and mainmenu.bin, each represented by a 0xDF00 chunk. A file may be
exported by the Display Designer.

04.03.21.01

Upload an U&Z configuration to the device -> Device Transfer file type 0xDF0B 04.03.xx.xx

Read system variables -> Studio df_kvp=var,<VAR_NAME> (same as global variables) (2.2.3.2.14) 04.03.12.01

Write system variables -> Device df_var (2.2.3.2.4) 04.03.10.01

Retrieve the device’s system log -> Studio df_send_file=<PATH ON SRV>,syslog, Transfer file type 0xDF0C (2.2.3.2.18) 04.03.12.01

Update for the BioKey Modul -> Device Transfer file types 0xDF12 to 0xDF15 04.03.xx.xx

Retrieve fingerprint templates from the device -> Studio df_send_file=<PATH ON SRV>,finger,..., Transfer file type 0xDF18 (2.2.3.2.18)

04.03.12.05 (opti-
cal sensor)

04.03.15.08 (line
sensor

Delete fingerprint templates from the device -> Device df_remove_finger=<PID>,<FID> (2.2.3.2.20)

04.03.12.05 (opti-
cal sensor)

04.03.15.08 (line
sensor

Data protocol http and https communication page 58 Date: 30.04.2024

Append / Write fingerprint templates to the device. -> Device Transfer file type 0xDF18

04.03.12.05 (opti-
cal sensor)

04.03.15.08 (line
sensor

Data protocol http and https communication page 59 Date: 30.04.2024

A.3: Structure of a transfer file

The transfer file is structured according to the IFF file format. This file format allows representing dif-
ferent data types by “chunks”. Chunks the can be interpreted according to their type and relative lo-
cation inside the structure, unknown chunks may be skipped while evaluating the IFF file.

Setup list data and access control list data may be represented within a single IFF container file or
distributed individually using df_setup_list and df_ac2_list among the devices.

The general structure of an IFF file is shown in the following table:

 Offset
Len-
gth

Name Description Example

D
F

IF
-H

e
a
d

e
r 0 4 Header The chunk is of type „FORM“ „FORM“

4 4 File length
Length of the form minus 8 (this is the
amount of data left to read!)

16542

8 4
Form Type In-
formation

Id of the form „DFIF“

V
e

rs
io

n
 d

a
ta

12 4 Header The chunk is of type „DFFV“ „DFFV“

16 4 Length of data Length of the form minus 8 28

20 12 FW version Firmware version string
„04.03.11
.00\0“

32 16 FW suffix Identification for Beta- or RC versions
„https.1\0
“

F
il

e
 1

48 4 Header The chunk is of type „FORM“ „FORM“

52 4 Length of data Length of the form (-8) 16366

56 4
Form Type In-
formation

Id of the form „DFF0“

F
il

e
 t

y
p

e

60 4 Chunk-Header Chunk Header “Filetype” „FTYP“

64 4 Length of data Length of the form (-8) 4

68 2 File type Id of the file type as detailed below
0xDF02
(Setup)

70 2
CRC (0xA001)
of DATA seg-
ment content

CRC checksum computed for the fol-
lowing data chunk’s content (without its
chunk header)

0xF00D

F
il

e
n

a
m

e
 72 4 Chunk-Header Chunk Header “Filename” „FNAM“

76 4 Length of data Length des Chunk (-8) 9

80 10 File name Name of the file
„setup.ae
s“

 89 1 Padding-Byte
Padding-Byte, since the length of the
filename is odd.

0

Data protocol http and https communication page 60 Date: 30.04.2024

D
a

ta
 90 4 Chunk-Header Chunk Header “Data” „DATA“

94 4 Length of data Length of Chunk (-8) sz

98 16315 Daten The file’s content

 16413 1 Padding-Byte Padding-Byte, since sz (16315) ís odd. 0

F
il

e
 2

16414 4 Form-Id

Second form with another file

Additional forms and chunks of file 2

„FORM“

16418 4 Length of data 127

16422 4
Form Type In-
formation

„DFF0“

16426 123

 16549 1 Padding-Byte Padding-Byte, since sz (16315) ís odd. 0

S
ig

n
a

tu
r

16550 4 Chunk-Header
Chunk-Header Signature – this chunk
contains the signature of the following
form

„SIGN“

16554 4 Length Length of Chunk (-8) 18

16558 2 Algorithm

Signature algorithm

0=MD5+AES,
1=SHA1+AES,
27=SHA256+PubKey

0x0001

16560 16
Signature Da-
ten

Signature of the content of the following
DFF0 form (without optional padding
byte on DFF0-Level)

F
il

e
 3

16578 4 Form-Id Third, signed form with another file „FORM“

16582 4 Length Length of Form (-8)

16586 4 Form Type „DFF0“

16590 773 Data

 17367 1 Padding-Byte
Padding byte, since 773 is odd (this last
padding byte is not part of the signa-
ture!)

A file may contain an arbitrary number of chunks. The information on the file being from the Datafox
context is derived from the top level FORM type „DFIF“.

Note:
The IFF format was specified by Electronic Arts in 1985.
At this point in time, big-endian encoding of data was dominant. This, the chunk
length is encoded in big-endian despite little endian being the predominant encoding
today.

Example: A chunk has a size of 123456 Bytes = 0x1E240 Bytes. In Big-Endian this is
encoded by the byte sequence 0x00 0x01 0xE2 0x40.

Data protocol http and https communication page 61 Date: 30.04.2024

See https://en.wikipedia.org/wiki/Interchange_File_Format or https://en.wikipe-
dia.org/wiki/Endianness.
Standard: http://wiki.amigaos.net/wiki/EA_IFF_85_Standard_for_Interchange_For-
mat_Files

!

Attention:
When embedding data into chunks that have odd (un-even) length (e.g. file content or
file names), it is required that the chunk is padded using one additional Zero-Byte. This
padding byte is not included into the chunk’s length and is mandatory.

Concret:

- A chunk always occupies and even number of bytes – even if its content has an
odd length.

- The padding byte is not included into the CRC computation

A.3.1: Forms and Chunks contained in the transfer file

The transfer file’s topmost node is a FORM. The form’s type is “DFIF” as shown in the previous
chapter. The form is followed by chunks containing version information (“DFFV”), an optional de-
scription form “DESC” explaining the file’s content in a human readable way and a list of files – each
encoded into a “DFF0” form.

A.3.1.1: Version information [Chunk „DFFV“]

Version information chunk are associated to the IFF file’s creator:

Offset # Name Description Example

V
e

rs
io

n

+0 4 Header Header of the version chunk „DFFV“

+4 4 Length
Length of the Chunk (-8 bytes
header)

28

+8 12 FW version
Version of the firmware executed on
the device.

„04.03.11.00\0“

+20 16 FW suffix
Beta- or RC-Tag, if the device firm-
ware is such.

„https.1\0“

A.3.1.2: Description of the file’s content [FORM „DESC“]

Currently, IFF files are typically sent to the device using Datafox Studio. To present information on
the file’s content and intention, a DESC form can be added.

The description form contains information on the hierarchy (“HIER”) where to place the information
as well as descriptive text (“HTML”).

Offset # Name Description Example

D e s c r i p ti o n

+0 4 Header Form-ID „FORM“

https://en.wikipedia.org/wiki/Interchange_File_Format
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness
http://wiki.amigaos.net/wiki/EA_IFF_85_Standard_for_Interchange_Format_Files
http://wiki.amigaos.net/wiki/EA_IFF_85_Standard_for_Interchange_Format_Files

Data protocol http and https communication page 62 Date: 30.04.2024

+4 4 Length Length of the form (-8) 4

+8 4 Form Type Description „DESC“

A.3.1.2.1: Hierarchy tag for the description [Chunk „HIER“]

With one or more hierarchy tags, the content of the file may be presented with the right context. By
using two hierarchy tags, you may put an update file for the WIFI module into the category “module
updates” / “WIFI”.

Offset # Name Description Example

H
ie

ra
rc

h
y

+0 4 Header Header of the hierarchy chunk „HIER“

+4 4 Length Length of the chunk (-8) Sz + 6

+8 4 Language
Language that applied to the hierar-
chy tag (if there is more than one)

„DE\0“

+12 2 Level
Level inside the hierarchy, starting at
0

0

+14 sz Text Description of the hierarchy level
„Module“ or
„WLAN“

+14 +
sz

0/1
Opt. Padding-
Byte

Optional padding byte if sz is odd. 0

A.3.1.2.1: Description text [Chunk „HTML“]

An html chunk contains a description of the file’s content in human readable language. This descrip-
tion is associated to a language as the hierarchy tags are. The text is encoded as HTML – focus
should be content not stylesheet.

Offset # Name Description Example

B
e

s
c

h
re

ib
u

n
g

s
te

x
t +0 4 Header Header of the description chunk „HTML“

+4 4 Length Length of the chunk (-8) Sz + 4

+8 4
Language

Language of the description „DE\0“

+12 sz Text
Description of the transfer file’s con-
tent

+12 +
sz

0/1
Opt. Padding-
Byte

Optional padding byte if sz is odd. 0

A.3.1.3: File content [FORM „DFF0“]

Header form used to transfer a file’s content. Inside of this form the following chunks are typically
used:

Data protocol http and https communication page 63 Date: 30.04.2024

- File name,

- Encoding of the file data [Optional, Default: binary content]

- Auxiliary information [depending on the file type]

- Informationen on (HW-) Compatibility

- And the content of the file

Offset # Name Description Example

F
il

e
 H

e
a
d

e
r +0 4 Header „FORM“

+4 4 Length
Total length of form and contained
chunks (-8)

4 + Sz

+8 4 Form Type Datafox File Version 0 „DFF0“

Sz is the amount of data contained inside the FROM.

A.3.1.3.1: Type of data [CHUNK „FTYP“]

The „FTYP“ chunk inside of the transfer file form (“DFF0”) specifies how the data may be verified as
well as what kind of data is contained inside the file.

Offset # Name Description Example

F
T

Y
P

 C
h

u
n

k

+0 4 Chunk-Header Header of the file type chunk „FTYP“

+4 4 Length Length of the chunk (-8) 4

+8 2 Type of data
Content type according to specifica-
tion

0xDF01

+10 2

CRC (0xA001) of
data

Initial: 0xffff

XorOut: 0

Standard CRC checksum computed
across the content of DATA or DATE
chunk contained in this DFF0 form.

If we have encrypted data, the
checksum is computed for the en-
crypted representation of the data.
We do not give away a hint on the
encryption in this way and allow in-
tegrity verification even without the
correct key.

0xF00D

We use the following C-Code to compute the CRC Checksum on a data block (data and size define

the raw block of data, crc is set to 0xffff when calling the function):

// CRC 16bit berechnen

unsigned short GetCRC16(const unsigned char *data, unsigned int size, unsigned short crc)

{

 unsigned int i;

 unsigned char j;

 for (i = 0; i < size; i++)

 {

Data protocol http and https communication page 64 Date: 30.04.2024

 crc = crc ^ data[i];

 for (j = 0; j < 8; j++)

 {

 if (crc & 0x1)

 {

 crc >>= 1;

 crc = crc ^ 0xA001;

 }

 else

 {

 crc >>= 1;

 }

 }

 }

 return crc;

}

A.3.1.3.2: Auxiliary parameters [CHUNK „FAUX“]

This chunk contains additional data which – depending in the file type – are necessary to evaluate
the content. Please refer to the appendix defining the file types and their need for auxiliary data. If a
file type requires some additional data and it is omitted, the file’s content most likely will be rejected
by the device.

Offset # Name Description Example

A
u

x

+0 4 Header Header of the aux data chunk „FAUX“

+4 4 Length Chunk length (-8) sz

+8 2 Version
Version number for this chunk’s data
– if versioning is required in the fu-
ture

1

+10 sz Auxdata Additional data
e.g. PID and
FID of a finger
template

+10 +
sz

0/1
Opt. Padding-
Byte

Optional padding byte if sz is odd. 0

A.3.1.3.3: File name [CHUNK „FNAM“]

This chunk contains the name of the file being transferred.

Offset # Name Description Example

F
il

e
n

a
m

e

+0 4 Header Header of the file name chunk „FNAM“

+4 4 Length Chunk length (-8) sz

+8 sz File name Name of the file „my.cert“

 +8 + sz 0/1
Opt. Padding-
Byte

Optional padding byte if sz is odd. 0

Data protocol http and https communication page 65 Date: 30.04.2024

Please note: The version numbering of the FAUX chunk starts at 1. Please consult Appendix A 3.2
on content of the FAUX chunk.

A.3.1.3.4: Encoding-Informationen des Datenblocks [CHUNK „ENC “]

Chunk with content encoding information:

Offset # Name Description Example

Z
e
ic

h
e

n
-E

n
-

c
o

d
in

g

+0 4 Header Header of the encoding chunk „ENC “

+4 4 Length Chunk length (-8) sz

+8 sz Encoding

Mime type associated to the data en-
coded in this file form. If this chunk is
omitted, the data is treated as binary
data.

ISO-8859-1

 +8 + sz 0/1
Opt. Padding-
Byte

Optional padding byte if sz is odd. 0

A.3.1.3.5: Compatibility information [CHUNK „COMP“]

This chunk applies to update file chunks, as used e.g. for module updates. The chunk contains in-
formation on the hardware being compatible with the update. The internal structure is not disclosed
here.

Offset # Name Description Example

C
o

m
p

a
ti

b
il
it

y

+0 4 Header „COMP“

+4 4 Length Chunk length (-8) 2 + sz

+8 2 Version Version of this chunk 1

+10 sz Data Data on compatibility

+10 +
sz

0/1
Opt. Padding-
Byte

Optional padding byte if sz is odd. 0

A.3.1.3.6: Datei-Inhalt [CHUNK „DATA“]

Note: Alternatively to the DATA chunk there is chunk containing internally encrypted data. The en-
crypted version is used e.g. for firmware updates or module updates and not meant to be created
outside Datafox (see DATE chunk for details)

Chunk containing the raw file content:

Offset # Name Description Example

F
il

e

d
a
ta

+0 4 Header „DATA“

+4 4 Length Chunk length (-8) sz

Data protocol http and https communication page 66 Date: 30.04.2024

+8 sz Data Content of the file

 +8 + sz 0/1
Opt. Padding-
Byte

Optional padding byte if sz is odd. 0

A.3.1.3.7: Encrypted data chunk (replaces DATA chunk, if used) [CHUNK „DATE“]

The DATE chunk offers additional information on the contents intended placement. Additionally the
content is encrypted, so that the device can detect if it was manipulated. Chunks of this type are not
intended to be created by anyone outside Datafox.

Offset # Name Description Example

E
n

c
ry

p
te

d
 d

a
ta

 s
e

g
m

e
n

t

+0 4 Header Chunk header for encrypted data „DATE“

+4 4 Length Chunk length (-8) 20 + sz

+8 2 Version Internal chunk revision information 0

+10 2 Internal Type
Internal type (Flash, Font, Text, Icon,
…)

+12 4 Start offset
Start offset e.g. of a firmware update
segment

0x00208000

+16 4 End offset
End offset e.g. of a firmware update
segment

0x003fffff

+20 4 CRC
CRC computed for the unencrypted
data

+24 4 Seed Seed value to be for decryption 0x12345678

+28 sz Data Encrypted content of the file

A.3.1.3.8: Signature-Chunk [CHUNK „SIGN“]

The signature chunk stores the signature of the next chunk within the IFF file.

Offset # Name Description Example

S
ig

n
a

-

tu
re

 +0 4 Header Chunk containing a signature „SIGN“

+4 4 Length Chunk length (-8) 2 + sz

+8 2 Method 0 – MD5 0

 +10 sz Signature data

A.3.1.3.9: Signed data chunk [CHUNK „DATS“]

Within a firmware update file (0xDF01) one or more data chunks as described within this chapter
are contained. They may contain text, program or other data. These chunks are meant to be created
by Datafox and will not be processed if the signature chunk SIGN does not contain the correct sig-
nature data.

Data protocol http and https communication page 67 Date: 30.04.2024

Offset # Name Description Example

D
a

ta
 s

e
g

m
e

n
t

+0 4 Header Chunk containing signed data „DATS“

+4 4 Length Chunk length (-8) 12 + sz

+8 2 Version Version assigned to this chunk

+10 2 Internal Type
Internal data type (Flash, Fonts,
Text, Icons, …)

+12 4 Start offset Start-Offset 0x00208000

+16 4 End offset End-Offset 0x003fffff

+20 sz Binary data Data

A.3.1.4: Record / List data description [FORM „DFDS“]

This form contains header data for record or list data descriptions. With the form the following
chunks may be contained:

- Name of the dataset definition (as defined by the setup)

- Index of the dataset definition (as defined by the setup)

- Index of the priority field (optional)

- Index of the selection key field (optional)

Additionally the form may contains DCOL forms that will detail the individual fields of record of list
data field (see A.3.1.5)

D
a

ta
s

e
t

S
tr

u
c

tu
re

 +0 4 Header „FORM“

+4 4 Length
Total length of form and contained
chunks (-8)

4 + Sz

+8 4 Form Type ID Datafox Data Structure „DFDS“

A.3.1.4.1: Data record name [„DNAM“]

This chunk contains the name of the data record / list. The name is composed out of the type and
the name as defined by the setup – separated by a single dot. The setup list “personal” is thus rep-
resented by “list.personal”.

The following prefixes are being used:

- “list” is used for setup defined list data

- “access” is used for access control lists data

- “record” is used for dataset record structure

Offset # Name Description Example

Offset # Name Description Example

Data protocol http and https communication page 68 Date: 30.04.2024

D
a

ta
s

e
t-

n
a
m

e
 +0 4 Header „DNAM“

+4 4 Length Total length of chunk (-8) sz

+8 sz Filename Name of the record „record.booking“

 +8 + sz 0/1
Opt. Padding-
Byte

Optional padding byte if sz is odd. 0

A.3.1.4.2: Index of the data record with the setup [„DIDX“]

This chunk contains a data record’s index within the setup structures. The index starts at 0.

 Offset # Name Description Example

D
a

ta
 r

e
c

o
rd

in
d

e
x

+0 4 Header „DIDX“

+4 4 Length Total length of chunk (-8) 2

+8 2 Index
Index of the data record description
within the setup.

1

A.3.1.4.3: index of the priority field [„DPRI“]

This chunk contains the index of the field that contains the priority information within a data record. If
there is no priority defined for a data record, this chunk is omitted.

 Offset # Name Description Example

P
ri

o
 i
n

d
e
x

+0 4 Header „DPRI“

+4 4 Length Total length of chunk (-8) 2

+8 2 Index
Index of the record’s field containing
the priority data.

1

A.3.1.4.4: Index of the key field [„DKEY“]

This chunk contains the index of the column according to that the (list) data is sorted.

 Offset # Name Description Example

K
e

y
 i

n
-

d
e
x

+0 4 Header „DKEY“

+4 4 Length Total length of chunk (-8) 2

+8 2 Index Index of the key column 1

A.3.1.5: Information on columns of lists or data records [FORM „DCOL“]

This form is used as a header containing information on a single data record or list column. The
form contains the following chunks:

- Field/column name chunk

Data protocol http and https communication page 69 Date: 30.04.2024

- Field/column content information chunk

C

o
lu

m
n

H
e

a
d

e
r

+0 4 Header „FORM“

+4 4 Length
Total length of form and contained
chunks (-8)

4 + Sz

+8 4 Form Type Id Datafox Column Data „DCOL“

A.3.1.5.1: Column content information chunk [„CINF“]

This chunk contains the data type definition for a field/column.

 Offset # Name Description Example

F
ie

ld
/C

o
lu

m
n

 t
y

p
e

+0 4 Header „CINF“

+4 4 Length Total length of chunk (-8) 6

+8 2 Type

Type of the field

2 – Date and Time

3 – Numerical value

4 – Alphanumerical value

7 – Fingerprint Template DIN
V44600 (161 Byte)

8 – Fingerprint Template Idencom
Compact (216 Byte)

9 – Binary data (max. 220 Byte)

4

+10 2 Size Size of the field/column in bytes 35

+12 2 Index Index of the field/column 5

A.3.1.5.2: Column name chunk [„CNAM“]

This chunk contains the name of a field/column.

 Offset # Name Description Example

F
ie

ld
/C

o
lu

m
n

n
a
m

e

+0 4 Header „CNAM“

+4 4 Length Total length of chunk (-8) sz

+8 sz Name Name of the field/column „Personal Id“

+8 + sz 0/1
Opt. Padding-
Byte

Optional padding byte if sz is odd. 0

Offset # Name Description Example

Data protocol http and https communication page 70 Date: 30.04.2024

A.3.2: File types

Each transfer file exchanged between device and server contains a type identifying the file’s content
– the first two bytes denoted as “Version” represent the version from section A.3.1.3.2: Auxiliary pa-
rameters [CHUNK „FAUX“] – thus this parameter is shown in italics font int the following table.

File type Content of the file
Device ->
Server

Server ->
Device

0xDF00

File from or for the device’s file system.

The FNAM chunk is meant to contain the entire file path, if the
file is not to be located in the device’s top-most directory.

(please check 2.2.3.2.18)

0xDF01 Firmware file * No

0xDF02 Setup file

0xDF03
List data (setup)

Auxiliary data: [Version >> 8, Version, List name]

0xDF04
List data (access control 2)

Auxiliary data: [Version >> 8, Version, List name]

0xDF05

List data (for Timeboy, will be sent to a MasterIV device and then
transferred to the connected Timeboy(s)).

Auxiliary data: [Version >> 8, Version, GroupID >> 8, GroupID,
List name]

No

0xDF06
Image (Camera or Signature) or large Barcode data (general:
File data created by the device)

 No

0xDF07 Language file

0xDF08 Color definition file for the Timeboy

0xDF09 LAN / WIFI configuration file

0xDF0A

Display design file

The display design consists out of a set of files, which are trans-
ferred as 0xDF00 files. Please use the Display Designer from the
Datafox Studio to export your Design in an appropriate format.

0xDF0B U&Z configuration file

0xDF0C Systemlog No

0xDF0D Bootloader * No

0xDF0E

Fingerprint template data (Saturn 01)

Auxiliary data: [Version >> 8, Version, PID >> 24, PID >> 16,
PID >> 8, PID, GID >> 8, GID, FID]

Please use 1 for GID parameter (Group ID). GID 0 is invalid,
GIDs > 1 are used for verification with transponders.

No

->
0xDF18

0xDF0F Touch configuration file

Data protocol http and https communication page 71 Date: 30.04.2024

0xDF10 Hardware info file (HIP) *

0xDF11 Update for WIFI module RS9110 * No

0xDF12 Update for fingerprint sensor Biokey 3000 modul * No

0xDF13 Update for fingerprint sensor Biokey 4000 modul * No

0xDF14 Update for fingerprint sensor Biokey 4020 modul * No

0xDF15 Update for fingerprint sensor Saturn 01 * No

0xDF16 Update for the U&Z radio base station (FSM) * No

0xDF17 Update for the proximity and ambient light sensor No

0xDF18

Fingerprint data (Saturn 01 or Idencom)

Aux-Parameter: [Version >> 8, Version, Template-Type, PID >>
24, PID >> 16, PID >> 8, PID, GID >> 8, GID, FID]

Template-Type:

0 – DIN V66400 format (161 Byte)

1 – Idencom-Compact format (216 Byte)

2 – Idencom-Standard format (561 Byte)

3 – Saturn 01 binary template format

Please use 1 for GID parameter (Group ID). GID 0 is invalid,
GIDs > 1 are used for verification with transponders

0xDF19
Directory listing, see df_send_file (2.2.3.2.18) with parameter
„dir“.

 No

0xDF19
Configuration package for an TWN4 reader, that allows rea-ding
different RFID transponders (BIX / AppBlaster)

No

TBA
Update to be sent across the AC2 bus *

Auxiliary data: [Version >> 8, Version, Modul-ID >> 8, Modul-ID]

No

* Please Note: File of this type will be created by Datafox only. The DATE chunk is encrypted using
a private Datafox key which allows the device receiving it to verify the authenticity and integrity of the
file.

Data protocol http and https communication page 72 Date: 30.04.2024

Appendix B: HTTPS Communication

The communication described in this manual can use the encrypted https protocol from firmware
version 04.03.11.01 on.

B.1: Elements of the https infrastructure

HTTPS is – as is HTTP – a client/server protocol. The client initiates a network connection to a tar-
get port on the HTTPS server using TCP/IP, the data exchange is using encryption against eaves-
dropping attacks.

HTTPS uses asymmetric encryption (for negotiating during the HTTPS handshake) in form of a
server certificate as well as symmetric encryption for later data exchange.

B.2: Establishing the connection

The HTTPS communication is performed as implemented in current web browsers.

- The connection is initiated by the terminal by connecting to a port on the server

- Handshake between client and server

o Negotiation of the encryption algorithm

- Exchange of the certificates

o Validation of the server’s certificate. If the certificate is validated successfully, the client
has access to the server’s public key. Using this public key the client now can securely
encode messages that only the server can decrypt with its private key.

o Optional: If the server requests a client certificate, it will be provided if configured at the
client.

- Exchange of keys

o The key used for symmetric encryption is exchanged between client and server

B.3: Validation of the server certificate

The firmware requires that the certificate provide by the server during the HTTPS handshake is
valid. The validity is check classically – the certificate is checked against a list of certificates stored
on the device (the so-called CA-bundle that is maintained by every browser or OS nowadays). The
CA-bundle contains the certificates that will be accepted by a device.

Use cases:

• Your server (“your-company.de”) provides a certificate signed by a Verisign-certificate:

The server provides the client with its certificate.
The client determines, that the server certificate “your-company.de” was generate using a
Verisign certificate. The client checks its local CA bundle for the Verisign certificate and
checks the parentage of the “your-company.de” certificate.

The following possibilities exist:

o The client does not have the Verisign certificate in its CA bundle: The certificate
“your-company.de” is considered to be invalid.

o The parentage cannot be verified: The certificate “your-company.de” is considered to
be invalid.

Data protocol http and https communication page 73 Date: 30.04.2024

o The provided certificate is derived from the Verisign certificate stored on the device:
The certificate “your-company.de” is considered to be valid.

• Your server (“your-company.de”) provides a self-signed certificate:

In this case the validation of the server certificate is only possible if the device contains a
copy of the server certificate in its CA bundle.

• Your server (“your-company.de”) provides a certificate signed by Datafox:

This case is pretty much alike the first case presented in this section. However, Datafox uses
a GlobalSign certificate. The certificate issued for „your-company.de“ is derived from the Da-
tafox certificate, which is derived from the GlobalSign certificate.

When providing its certificate the server “your-company.de” provides the certificate chain as
well (excluding the GlobalSign certificate).

The client checks the server’s certificate chain. If the parentage from the Datafox certificate
does not verify, the certificate is considered to be invalid.

If the parentage against the Datafox certificate is valid, the device searches from the Glob-
alSign certificate in its CA bundle. If the GlobalSign certificate is not stored on the device, the
certificate is considered to be invalid.

If the GlobalSign certificate is stored within the CA bundle, the parentage test provides the
validity of invalidity of the “your-company.de” certificate.

B.4: Communication

After successful validation of the server’s certificate, the communication partners negotiate the key
to be used for encrypted data exchange (“session key”). This communication uses a symmetrical
cipher mechanism. The exchange the session key, the client encrypts the session key using the
server’s public key (that was contained inside the server’s certificate). The server then decodes the
client’s message using the server’s private key.

The device firmware uses cipher suites TLS 1.1 and newer. The suites TLS 1.0 and even older im-
plementation are considered obsolete for not providing the required security levels any more.

B.5: Using a self-signed (server-) certificate

You may use the OpenSSL Implementation (that typically is installed already on a Linux system and
may be installed e.g., using Cygwin on Windows) to create a key pair for HTTPS communication.
The private key (my.key) has to be assigned only to the web server, the public key (my.cert) is re-
quired by the server as well as by the client.

You may create the new 2048 bit RSA key pair using the following command:

 openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout my.key -out my.cert

If you wish to integrate a password into the key file, you may pass it using the additional parameter
“-passout file:key.txt” to the call to openssl. The key has to be stored in the local file “key.txt” for this
on the machine, running the openssl programm.

Data protocol http and https communication page 74 Date: 30.04.2024

You may create different key pairs, e.g. an RSA key pair with 3072 bit key length:

openssl req -x509 -nodes -days 365 -newkey rsa:3072 -keyout my.key -out my.cert

Or a key pair using elliptic curve cryptography (ECC):

openssl ecparam -genkey -name prime256v1 -out key.pem

openssl req -new -sha256 -key key.pem -out csr.csr

openssl req -x509 -sha256 -days 365 -key key.pem -in csr.csr -out certificate.pem

The process for creating an ECC key pair uses a CSR (certificate signing request) – which is the
normal way when asking a certificate authority to officially sign the certificate – however CSR is the
self-signed to create the certificate. To use the created files on a device, you have to rename the
files, e.g. key.pem -> ecc.key and certificate.pem -> ecc.cert before uploading them to the device.

B.5.1: Device configuration – Deploying a server certificate

If a device shall talk to an https server, it is mandatory, that the device is capable of verifying the
server’s certificate. To perform this verification, it is necessary that the device can check the server’s
chain of certificated from which the server’s certificate is derived or knows that the self signed certifi-
cated may be trusted.

You may use Datafox Studio from Version 04.03.11.02 to maintain the certificated used by a client.
Please use the menu entry “Configuration” -> “Transfer certificates” to upload the desired certificates
as a device’s trustworthy certificates (CA bundle).

Choose the directory contain-

ing the *.cert files to be up-
loaded to the device. You may
check / uncheck the files indi-
vidually. By selecting “Trans-

fer” the next dialog is dis-
played.

In this dialog you my select
the device to upload the files
to. By selecting „Execute“ the

transfer process is started.

After successful operation the
transferred certificates are dis-

played.

!
Attention:
Please do only transfer the necessary certificates to the device when starting your
https integration phase (and never transfer a key to the device). The storage area pro-
vided by the devices is way smaller than provided by a current web browser of OS.

Data protocol http and https communication page 75 Date: 30.04.2024

!

Attention:
The current firmware implementation reads the certificates only at startup of the device.
Currently, you have to reboot the device as soon as you change the certificates
stored on the device.

B.5.2: Which certificate is used by the web server? (“old” Edge Browser)

If unclear, which certificate is used by your web server, you can collect all necessary data from your
web browser using the following steps:

Click on the lock symbol of the Microsoft Edge browser. A popup will appear below the lock symbol
inside the browser window showing the “Website Identification” data. Activate “Show certificate” to
display the certificate chain at the right-hand side of the browser window as shown below:

Despite the screen shots being in German language, you can see, that the certificate for “data-
fox.de” domain is a wildcard certificate. This certificate is derived from “AlphaSSL CA”, which is de-
rived from “GlobalSign Root CA”.
The certificate verification using by TLS tracks the web site’s certificate up to its root certificate. For
performing this check, the device needs the “GlobalSign Root CA” certificate to be stored in the de-
vice’s filesystem. Please save the certificate using “Export to file” to your Windows PC’s filesystem,
e.g., as “GlobalSignRootCA.crt”.
Microsoft Edge saves the certificate as its binary representation (DER format), the device need the
certificate to be PEM-encoded. You can use openssl to convert between the two representations:

openssl x509 -inform DER -in GlobalSignRootCA.crt -out GlobalSignRootCA.pem -text

The resulting “GlobalSignRootCA.pem” then can be renamed as “GlobalSignRootCA.cert” an trans-
fered to the device using the DatafoxStudioIV.

Data protocol http and https communication page 76 Date: 30.04.2024

B.5.3: Which certificate is used by the web server? (“Chromium” Edge Browser)

The Chromium Edge Browser allows accessing certificate information of a website using the lock-
symbol as well.

The certificate dialog is shown. Please traverse the the certificate path tab page, select the root cer-
tificate an active the button „show certificate“

An identical dialog appears that displays only the root certificate. Traverse to the tab „Detail“ as se-
lect the button „copy to file“:

The assistent shown allows to export the certificate. Please be sure to export the certificate as a
“Base 64 encoded x.509 certificate”. The so exported certificate is usable for Datafox Devices.

The exported certificate is generated using the file extension “.cer”. This file has to be renamed to
end with “.cert” and may be transferred to a device then.

Data protocol http and https communication page 77 Date: 30.04.2024

B.5.4: Device configuration – Deploying a client certificate

Please create a key pair for the device first. You may use a self-signed certificate/key-pair here or
derive it from an official, CA-signed certificate.

Transfer certificate and key to the device. Please ensure, that the certificate is named “client.cert”
and the key is named “client.key”. As soon as both files are present on the device, the TLS hand-
shake will use them as client certificate – should the server ask for it.

!
Attention:
The security of the “client.key” is of special concern. Thus, we ensure by the device firm-
ware that the key is not read back over the network.
So, even if the “client.key” has been transferred successfully to the device using Datafox
Studio, it cannot be read back.

B.6: Creating a private CA

OpenSSL is a very versatile crypto tool and can not only create self-signed certificates, but also
generate and sign chains of certificates. This makes it possible to derive several certificates from
the same root certificate - since the root certificate is sufficient for certificate verification, you can
generate a family of server or client certificates in this way.

First, please install OpenSSL on the system on which you want to create your CA. Windows or
Linux systems are equally suitable here; we have not tried this process on Mac OS X.

B.6.1: Creating the root key/certificate of the CA

To do this, proceed as follows:

- First create the root key "ca.key". Enter your data as "subject":
openssl req -subj "/C=<Country>/ST=<State>/L=<Stadt>/O=<Organisation>

/OU=<Orga-Unit>/CN=<Common Name>" -new -newkey rsa:2048 -nodes -out ca.csr

-keyout ca.key

- Now create the appropriate certificate, which then specifies the maximum validity period for

all derived certificates (7300 days is about 20 years):
openssl x509 -signkey ca.key -days 7300 -req -in ca.csr -out ca.pem

- If not explicitly configured otherwise, OpenSSL creates a "demoCA" in which the root certifi-

cate is expected and derived certificates are stored. This has the following structure:

demoCA/

demoCA/cacert.pem

demoCA/index.txt

demoCA/newcerts/

demoCA/private/

demoCA/private/cakey.pem

demoCA/serial

Create the above mentioned directories, the file index.txt should be empty, serial contain the
value "01".

- Copy the created root key pair into the demoCA:
cp ca.key ./demoCA/private/cakey.pem

cp ca.pem ./demoCA/cacert.pem

cp ca.pem ca.cert

Data protocol http and https communication page 78 Date: 30.04.2024

Your CA is now ready for use - you must protect the cakey.pem in the private directory! This can
then be used to generate new keys, the cacert.pem is needed later to check the derivation chain.

!
Attention:
If you lose the key, this is equivalent to losing the complete CA.

B.6.2: Create derived key pairs

Because the demoCA is now initialised, "only" three steps are required to create a derived certificate:

- Create a new key
openssl genrsa -out derived-a.key 2048

- Create a certification request

openssl req -subj "/C=<Country>/ST=<State>/L=<Stadt>/O=<Organisation>

/OU=<Orga-Unit>/CN=<Common Name>" -new -key derived-a.key -out derived-

a.csr

- Generate the signed certificate (730 days => 2 years validity)
openssl ca -in derived-a.csr -days 730 -out derived-a.cer

Thus, with derived-a.key and derived-a.cer, a key pair is now available that is derived from

cakey.pem. To check the correctness of the derivation chain, it is necessary that cacert.pem is

known as a trusted certificate - under Windows, it can be imported into the local keystore, for exam-
ple - in the case of a Datafox device, it must be transferred to the certificate store in the device.

Please note:
Of course, you can now create any number of certificates derived from the CA root cer-
tificate. Since OpenSSL manages these internally, it is necessary that this I differ with
regard to the subject.

B.7: Analysis of certificates

Microsoft Windows is shipping a command line tool named CertUtil. This programme can be

used to show the content of certificate files. For printing out the certificate’s content, the certificate
file has to be decoded first, the second instruction will then print the content:

> CertUtil -decode my.cert my.crt

Eingabelänge = 1440

Ausgabelänge = 1021

CertUtil: -decode-Befehl wurde erfolgreich ausgeführt.

> CertUtil my.crt

X.509-Zertifikat:

Version: 3

Seriennummer: c4124040d28438f6

Signaturalgorithmus:

 Algorithmus Objekt-ID: 1.2.840.113549.1.1.11 sha256RSA

 Algorithmusparameter:

 05 00

Aussteller:

 E=s.meyer@datafox.de

 CN=Sven Meyer

 OU=Development

 O=Datafox

 L=Geisa

Data protocol http and https communication page 79 Date: 30.04.2024

 S=Thueringen

 C=DE

 Namenshash (sha1): a12670bfda2ef055e608e130abab20741390a5d5

 Namenshash (md5): acc8642302e9f97b271419d7b06149eb

 Nicht vor: 27.09.2018 14:28

 Nicht nach: 27.09.2019 14:28

Antragsteller:

 E=s.meyer@datafox.de

 CN=Sven Meyer

 OU=Development

 O=Datafox

 L=Geisa

 S=Thueringen

 C=DE

 Namenshash (sha1): a12670bfda2ef055e608e130abab20741390a5d5

 Namenshash (md5): acc8642302e9f97b271419d7b06149eb

Öffentlicher Schlüssel-Algorithmus:

 Algorithmus Objekt-ID: 1.2.840.113549.1.1.1 RSA (RSA_SIGN)

 Algorithmusparameter:

 05 00

Länge des öffentlichen Schlüssels: 2048 Bits

Öffentlicher Schlüssel: Nicht verwendete Bits = 0

 0000 30 82 01 0a 02 82 01 01 00 ce 4b 2d 46 a8 05 75

 0010 73 d8 1c 88 49 97 64 0c 09 b0 96 0b 56 49 76 f0

 0020 1d 49 63 aa 80 cf 93 23 72 88 68 d6 ab 49 ba 7e

 0030 81 56 ae 57 21 d7 39 0b f8 a1 e0 91 88 7e 9f d1

 0040 cb 32 ce c5 02 98 e0 e3 a2 17 0f c5 c1 0e 7a 57

 0050 d7 4b 11 16 b3 8a f5 ac f1 b0 22 9f 75 4a e5 9a

 0060 9c 51 75 72 3b ea cb f3 94 6d 7e fb b0 d5 12 2d

 0070 1e e8 76 cf 70 42 69 94 71 89 34 f3 0c d7 bf 9a

 0080 ba 11 79 85 03 1d 46 01 00 2c 1a af ba 8c 7e 91

 0090 f2 a6 a0 d4 40 4e eb c6 10 6d 7a f9 3c f4 5f 1a

 00a0 55 77 20 19 6f 5c 42 76 44 51 ad a8 16 c1 3f e9

 00b0 96 0c 20 b7 f2 9f 6c 0e 7f 68 00 64 45 da 8b d3

 00c0 5c 2e 31 ed 63 01 cf 64 ea 52 d9 aa 44 b8 e9 15

 00d0 94 ea b0 2e 3a aa 5d 68 5a 13 d8 b1 de 68 2b f1

 00e0 7a a4 b8 ad 31 a8 f4 c3 62 20 ee 32 59 6e 33 6c

 00f0 1a 28 15 e9 13 27 e9 f6 18 94 44 cd 6b 64 b9 3d

 0100 a9 2c 9b c4 d0 1c 7b 77 71 02 03 01 00 01

Zertifikaterweiterungen: 3

 2.5.29.14: Kennzeichen = 0, Länge = 16

 Schlüsselkennung des Antragstellers

 480aacdb31e748625f02ae38aaab7a228722fb93

 2.5.29.35: Kennzeichen = 0, Länge = 18

 Stellenschlüsselkennung

 Schlüssel-ID=480aacdb31e748625f02ae38aaab7a228722fb93

 2.5.29.19: Kennzeichen = 0, Länge = 5

 Basiseinschränkungen

 Typ des Antragstellers=Zertifizierungsstelle

 Einschränkung der Pfadlänge=Keine

Signaturalgorithmus:

 Algorithmus Objekt-ID: 1.2.840.113549.1.1.11 sha256RSA

 Algorithmusparameter:

 05 00

Signatur: Nicht verwendete Bits=0

 0000 e0 63 94 47 a9 c0 e5 22 e2 ba 6e 7a 81 23 1f d7

Data protocol http and https communication page 80 Date: 30.04.2024

 0010 91 96 94 77 0c 3d 40 33 e1 9f 4e 35 e6 f6 76 51

 0020 9e 45 1e b9 63 01 f4 6a c4 04 06 5d a9 5c 10 be

 0030 b5 72 6e fd 0e ed 92 e7 eb 18 50 39 32 93 e2 55

 0040 1b 1d f4 a3 dd f3 28 6f b0 fa 7f 88 85 9f 40 e0

 0050 90 9e 56 37 93 06 a6 0f 79 5e 9f f0 ef e4 36 55

 0060 85 a5 03 de aa 00 87 2b b3 43 d1 20 14 51 ea a6

 0070 18 d8 a0 7d 8f 19 de 51 d5 54 02 c5 7a 92 39 52

 0080 84 ab 11 df b9 2f 78 9e 1f c5 f1 d9 b7 42 a6 0e

 0090 9a 84 3c 7f 56 05 81 c5 ac 4f 2e 99 39 77 88 84

 00a0 bd f2 c9 4b f0 a8 0b 58 83 bb d0 22 d4 5f 74 67

 00b0 45 5f 35 cf 90 0a 58 00 d1 05 60 38 ab 7b 0a 56

 00c0 2e 68 1c 4f 03 f6 7a 56 51 0a 38 65 a0 f2 e3 31

 00d0 c0 71 86 2e 06 d9 b0 a3 da 9a 23 45 5b 61 9e 1d

 00e0 7d 92 b0 1c b4 32 6d 80 e5 08 1e 14 05 9d 0d 40

 00f0 c7 c2 69 1b e8 81 d4 db 12 f5 36 77 e6 8e 27 80

Signatur stimmt mit dem öffentlichen Schlüssel überein.

Stammzertifikat: Antragsteller stimmt mit Aussteller überein

Schlüssel-ID-Hash(rfc-sha1): 480aacdb31e748625f02ae38aaab7a228722fb93

Schlüssel-ID-Hash(sha1): 09d0b7592a814746a0763cd728dadd7a63a6f3c7

Schlüssel-ID-Hash(bcrypt-sha1): 052b05f39aae0645b961e889c512889baa633aa0

Schlüssel-ID-Hash(bcrypt-sha256):

08beebf2f0d0b0cf4a857388dfb6a9ecda6f073665d7f44804e9552e16d469f1

Schlüssel-ID-Hash(md5): e3606281f405dc9bc9185609a419d76d

Schlüssel-ID-Hash(sha256):

29d0ee85e0290b1f3b13deda03a67bb824cc598c7e1ba4fbf5035f2290b8ecf1

Schlüssel-ID-Hash(pin-sha256): LSyEenteNDnDtS6o/57zWVbDOpCaOIOoyaNpcNfFuNQ=

Schlüssel-ID-Hash(pin-sha256-hex):

2d2c847a7b5e3439c3b52ea8ff9ef35956c33a909a3883a8c9a36970d7c5b8d4

Zertifikathash(md5): ce42b996362553fa26c594ad1ee81a24

Zertifikathash(sha1): fae481cd6b0e846ff5df4360844a013cac36d36c

Zertifikathash(sha256):

ea9dd651d5be4918bef5c699a444fca600129290ddc36def717b76004f0c2762

Signaturhash: 2f818c6fc579789dd464c4205eb8ceedf5568b483406fab4b9cae8b80e450684

CertUtil: -dump-Befehl wurde erfolgreich ausgeführt.

B.8: Limitations of the Implementation

The current implementation of HTTPS in Datafox Devices has some limitations. These are:
- TLS 1.1 and TLS 1.2 are supported.
- The current implementation does not support TLS 1.3.
- The length of an RSA key may not be bigger than 2048 bits.
- If you need stronger security, consider using ECC with key length of 256 bit.

B.9: Additional Information

There are lots of additional documentation available. Please consider the following pages to dig
deeper into the matter of https communication:

• https://tools.ietf.org/html/rfc2818

• https://en.wikipedia.org/wiki/HTTPS

• https://robertheaton.com/2014/03/27/how-does-https-actually-work/

https://tools.ietf.org/html/rfc2818
https://en.wikipedia.org/wiki/HTTPS
https://robertheaton.com/2014/03/27/how-does-https-actually-work/

Data protocol http and https communication page 81 Date: 30.04.2024

Appendix C: Initial device configuration using http

C.1: Sending info telegrams with configuration data cyclically

Using the extended download methods described in Appendix A, the http protocol provides all func-
tions needed to set up a MasterIV device.

The concept requires a minimal device configuration that allows sending an info telegram (see
df_kvp=info in section 2.2.3.2.14). The configuration is done using system variables – the device will
send an info request to the configured server after being physically installed.

The following system variables control the info telegram behaviour:

System Variable
Name

Description

http.config.mode

Number defining the period of sending the info telegram

1 = daily,

2 = weekly

4 = monthly (28 days)

The first telegram is sent about 30 minutes after system start.

http.config.host Host which receives the telegram

http.config.port Port at host to which the telegram is sent

http.config.send URL at the webserver receiving the info telegram

The timing of sending the info telegram depends on the device being configured by a setup at sys-
tem start time:

- With setup: approximately 30 minutes after start up, the according to http.config.mode.

- Without setup: approximately 30 seconds after start up (“emergency mode”), then approxi-
mately every 10 minutes.

In this mode the device will try to create an active mode connection to establish a service connec-
tion – provided an active mode server is configured. This may lead to some jitter in the timing, so
that the info telegram is not sent exactly 30 seconds after device start-up.

C.2: CRC Implementation of the info telegram

The info telegram uses a 32bit checksum that is computed using the CRC algorithm. The algorithm
uses

- Initial: 0xffffffff

- Polynomial: 0x04c11db7

As parameters, reflect is not applied.

Example: The CRC computed for the string “123456789” is 0x340BC6D9.

Data protocol http and https communication page 82 Date: 30.04.2024

C.3: Use Case: Monitoring and Updating device certificates

The cyclic info telegram may be used to key an eye on the certificates deployed to devices. In addi-
tion to the device type and the serial number a list of certificate file names and their checksums is
sent with the info telegram – this allows identifying the certificates on the device.

The following cases may occur:

- You are not planning a change of your server’s certificate chain and the root certificate from
which your server’s chain of certificates is derived is valid “long enough”

o No action is required

- You plan a change to your server’s certificate chain

o Send the new root certificate to the device

As result from previous considerations, you derive if you want to remove an existing certificate or
deploy a new certificate to the device. However, the scenario of exchanging a root certificate is ex-
pected to occur only rarely since top level certificates of a CA typically have a very long validity pe-
riod.

Removing a certificate may be triggered directly by sending a df_remove_file (see 2.2.3.2.19)

command. The deleted certificate will be available to the device until the communication is restarted
(e.g. by using a service mode command (see 2.2.3.2.3) or by restarting the device).

In order to transfer a certificate to a device, wrap it within a transfer file (file type 0xDF00, see Ap-

pending A.3.2), assign a name ending with “.cert” and send the file to the device (either as proto-

col level answer (see 2.2.3.1.1) or have it downloaded by the device by sending a df_load_file.

Data protocol http and https communication page 83 Date: 30.04.2024

Appendix D: Test server application with http integration

The ease integration of the http/https interface, Datafox provides its internal test server application.
This application may be used to test-drive the communication between a Datafox Device and a web
server and the test out the terminal’s behaviour to commands sent by the server.

Attention: The application is provided AS-IS. It does not come with any support or warranty.

Please note:
Datafox provides – as an alternative to the test server described in this chapter – on
online test environment. This environment is described at

https://www.datafox.de/support/testumgebungen

and is accessible from the internet.

The test server is continuously being expanded. The reference version is available at

 https://www.datafox.de/download/dist-DFWebServer-current.zip

ready for download. Please note that the application is a test application intended for internal pur-
poses and is provided without warranty claims.

https://www.datafox.de/support/testumgebungen
https://www.datafox.de/download/dist-DFWebServer-current.zip

Data protocol http and https communication page 84 Date: 30.04.2024

D.1: The User interface

After starting the test servers displays the following window:

The web server accepts data records on all properly configured server ports. You can adjust the
configuration of the server ports using the configuration files settings-<n>.ini (n=0,…,9).

The settings-file has the following structure:

The server’s current list of ports

10110 is a non-https server, the other ports
are server by HTTPS servers.

If a port configuration has an error, there is a
tooltip shown at the red cross indicating the
error.

List of command that can be
sent to the terminal.

Configuration Add / Remove in-
structions Sequence of requests

are responds

Data protocol http and https communication page 85 Date: 30.04.2024

[General]

port=8443

minThreads=1

maxThreads=10

cleanupInterval=1000

readTimeout=60000

sslKeyFile=ssl/my.key

sslCertFile=ssl/my.cert

maxRequestSize=16000

maxMultiPartSize=1000000

Removing the lines sslKeyFile and sslCertFile from the configuration files will result in a non-

encrypted, plain http server.

D.2: Webserver configuration

The configuration dialog allows adjusting settings concerning the server, the UI, the behaviour or the
directories.

D.2.1: Server

To adjust the server the following settings are available:

You may assign different application-level server paths for processing API-Level 0 (see 2.1) and
API-Level 1 (see 2.2) requests.

The base path is part of the URL which has to send by the device. Above screenshot indicates
that API-Level 1 request will have to be sent using “/putdata” as request path in order to be pro-
cessed by the server.

The base path (IFF handler) defines an endpoint which processes IFF content sent from a de-
vice automatically. The IFF structure is analysed and shown.

The communication password for RC4 based encryption of field content may be set here.
Please consider using TLS as channel encryption (“HTTPS”) – RC4 is present here only for
backward compatibility reasons.

Data protocol http and https communication page 86 Date: 30.04.2024

Firmware-Directory points to a directory in the filesystem containing DFZ files. You can use
e.g., the download-directory from Datafox Studio.

Basic authentication may be configured through these options. The server then requires the
credentials for accessing its content.

D.2.2: User Interface (UI)

For the UI section you can adjust the following settings.

You may – due to performance considerations – limit the number of requests shown in the
user interface. A reasonable setting will depend on the host’s computational power as well as on
the use case. During development it is typically not required to retain data that has been pro-
duced may hours ago.

Using the autoscroll option, you can define if a request currently selected shall be visible when
newer data arrives – or may be scrolled out of the visible area.

The Tip of the day may be deactivated or activated here.

D.2.3: Behaviour

The server’s behaviour may be adjusted using the following settings:

Data protocol http and https communication page 87 Date: 30.04.2024

The server may include the request to close the connection directly with the answer to the cli-
ent. For HTTP/1.1 this is no typical behaviour – and is intended for development purposes.
When activating this setting, the connection on socket basis is not closed by the server directly,
the server sends the “Connection: Close” Header to the client instead.

If the bandwidth limitation is activated, the server sends its answer packages slower that the
physical bandwidth would permit.

The delay between receiving a request and sending the response may be specified in millisec-
onds. You may use this setting to simulate system load on the server side.
Please keep in mind that typically the TCP timeout will tear down a connection after 20 seconds
automatically if idle. Then the server cannot send an answer to the device any more.

Additionally, you may specify how the server responds to a request. Typically, the server sends
an acknowledge as response, but you can select that the server does not answer at all (so that
the connection remains open until the TCP timeout tears it down) or deliberately sends no
acknowledge.

In order to simulate download errors, you may choose to have the server to toggle a bit every
now and then within the download content. Don’t use this function.

Should you need to record requests, you may choose to have the server save these requests.
Please keep in mind, that the request URL is stored only – the body of a POST request is not
stored in this way.

With the option to Extract Date/Time from a data record, the time delay of a request may be
examined. The server determines the creation timestamp from the content of the designated col-
umn (the device’s clock and the PC clock should be aligned properly)

D.2.4: Directories

Using the directory settings, you may specify which folders on the server’s hard disk are used as up-
and download directories. At the http side these directories may be accessed as “/upload-area/” or
“/download-area/”.

The upload directory is used to store files the device sends to the server. If this path does not
contain a drive letter, the path is considered to be relative to the current working directory. The
content of the directory is addressed as “/upload-area/<filename>” on the http side.
Remark: The “/upload-area/” is a definition of the DFWebServer application – your application
may use different paths here.

The Webserver may cyclically clean up the upload directory and remove old files. You may
specify the minimal age of a file to be cleaned.

Data protocol http and https communication page 88 Date: 30.04.2024

The download directory is a directory where the device may download data from (analogue to
the upload directory). On http level the directory is addressed by “/download-area/”.

Remark:

- The test server does not implement reliable communication cipher using df_cb and df_ce.

D.3: Processing of requests

The http and https server port listeners will react to an incoming http request. As soon as a Datafox
Device is configured with the server’s communication endpoint and a data record is created, it will
be shown in the main windows upper section.

The server will process the settings from the main window’s lower section and create the answer
sent to the device. Above screenshot will contain – additionally to the acknowledgement of the
server receiving the dataset (df_api=1) and beep instruction (df_beep=1) – please see 2.2.3.2

for details.

D.4: IFF files inside the web server

D.4.1: Analysis of IFF files

The web server is prepared for processing IFF files. These are typically send by the device due to
df_send_file instructions (see 2.2.3.2.18). To experiment with the upload processing, please di-

rect your web browser directly to any of the server’s listener ports:

Data protocol http and https communication page 89 Date: 30.04.2024

Above shown web page is an internal test page of the web server. You can use this to analyse you
IFF files – not depending on whether they have been created by a device or by your service. Select
the “Upload Area” hyperlink in above webpage:

After sending the request, the web server analyses the IFF frame and displays it as following:

The content of the IFF file is separated according to the sections and saved – along with the IFF file
– into the upload directory:

D.4.2: Creating an IFF file

The webserver may be used to create IFF files for sending them to devices. The functionality is
available using the IFF menu from the toolbar:

Data protocol http and https communication page 90 Date: 30.04.2024

The process of creating an IFF file is split into two sub setups. Firstly, the content is assembled,
then the file is built.

At the left-handed side, you may choose content to be stored into the IFF file. By clicking the
button “Add Chunk ->” the current content is prepared for transfer and moved to the list on the
right side.

If all elements to be stored in the IFF File have be collected, you may activate the button “Build
File” to create the IFF file. By checking “Add to Downloads?” you may automatically create a
command inside the web server’s command table to instruct the device to download the IFF file.

D.5: Working and updating server certificates

The webserver ships with a set of self-signed certificates, so that I can be used easily. These certifi-
cates are RSA as well as ECC key/certificate pairs.

You may – should the certificates have expired – recreate these using the “gen_certificate.sh” script
– provided you have OpenSSL and a Unix command prompt (e.g. Cygwin) available.

D.6: Firmware-Update using the web server

The test server implements a mechanism for experimenting with the firmware update using HTTP.
For using this mechanism two things are required:

- The device has to send an “extinfo” telegram to the web server

- The web server has to be configured for firmware update.

Configuration of the web server
The update service configuration is present at a dedicated tab within the configuration dialog. A
sample setup may look as following:

Data protocol http and https communication page 91 Date: 30.04.2024

• The Firmware Directory is the directory where DFZ files are located. Using the
download directory from Datafox Studio here might be a good idea.

• The Query Service is part of the mechanism described in Appendix E for determin-
ing the compatible firmware.

This service accessible for own development and demonstration purposes though
the Datafox webserver.

Please do not use this service for development or production purposes.

• The Match Service is part of the mechanism from Appendix E for choosing the cor-
rect firmware as well.

Please do not use this service for development or production purposes.

• As soon as quey and match services are configured, you can use the button next to
the query service to fill the selection box “Use Firmware for Update”. Choosing a
firmware here will lead to the server looking for the appropriate file in the “Firmware
directory” and filling out the “Firmware MD5” field accordingly.

• The final configuration parameter allows specifying the Update Mode. The following
settings are available:

o „Direct IFF Data provisioning“:
The firmware as IFF is sent directly as reponse.

o „df_load_firmware“:
The update service sends a “df_load_firmware” command to the device. The
device the downloads the specified firmware directly from the configured firm-
ware update server.

o „df_load_file“:
The update service sends a “df_load_file” command. This leads to a down-
load request sent from the device to the web server. The web server then de-
livers the firmware connect.

Requesting an “extinfo” telegram

Data protocol http and https communication page 92 Date: 30.04.2024

If above mentioned settings are done, you may request an “extinfo” from a device using the follow-
ing entry to the command list.

The arrival of the extinfo response will trigger the firmware update workflow:

- Checking of the device and the chosen firmware are compatible.
- Delivering the firmware according to the update settings.

Protocol
The steps of the update process are shown in the “Log” tab:

Data protocol http and https communication page 93 Date: 30.04.2024

Appendix E: Firmware Update using HTTP(S)

Datafox Devices implement a firmware update mechanism using HTTP(S) starting from firmware
release 04.03.20. The device downloads the “correct” firmware file, checks it and – if supporting the
device – installs it.

Determining the “correct” firmware is subject of this appendix.

For your orientation:

Diagram showing the process of the firmware update

The process of the firmware update requires interaction between the Datafox device, the OEM ap-
plication, the scripts “query.php” and/or “match.php” and a source for firmware files.

The device cyclically sends alive messages. These messages may be used to ask the device for its
hardware details (extended info, “extinfo”). The “extinfo” contains information on the device’s hard-
ware components, which are required in order to run the compatibility tests.

Data protocol http and https communication page 94 Date: 30.04.2024

“match.php” may be used to determine if a device’s hardware information is compatible with a de-
sired firmware version and to select the correct IFF file to be sent to the device.

Sending the firmware to the device can be accomplished in three ways:

- The OEM application sends the firmware directly as response to the device (see section
2.2.1.2)

- The OEM application tells the device to download the firmware file from a dedicated firm-
ware update server (df_load_firmware, see section 2.2.3.2.27)

- The OEM application tells the device to download an IFF file containing a firmware
(df_load_file, see section 2.2.3.2.17)

Both scripts require the parameters to be passed in classical URL encoding along with the GET re-
quest. The answer is sent URL encoded as well and resembles the structure of a system message.

Example:

Request:

…/query.php?fw=latest

Response:

df_api=1&type=1&reason=3800&group=380&detail1=04.03.19.20.dfz

Please note:
The structure of the response is part of the PHP scripts. These scripts are not influ-
enced by the device update.
The structure of a system messages is described in section 2.3.

E.1: Prerequisites for using “query.php” and/or “match.php”

“query.php” as well as “match.php” require a source for device firmware files accessible in the
server’ local file system. In order to check MD5 fingerprint efficiently, they have to be precomputed
as well.

The firmware has to be extracted into a folder having the same name as the DFZ archive. Addition-
ally, a file named “<dfz-name>.md5” containing the hexadecimal representation of the MD5 hash is
expected.

Starting from a root node $ROOT, at least the following files have to be made available when de-
ploying firmware version 04.03.19.19:

$ROOT/04.03.19.19.dfz/*.iff

$ROOT/04.03.19.19.dfz.md5

Other files from the DFZ archive, e.g. the “*.hex” files, are not used by this firmware method.

E.1.1: Sample script for deploying a firmware version at a server

In order to deploy a firmware version, the following script (Linux) may be used. Please note that the
script is rather a sample for your convenience that is provided AS-IS without warranty of any kind:

#!/bin/bash

Data protocol http and https communication page 95 Date: 30.04.2024

input_fn=$1

base_fn=`basename $input_fn`

rm -rf $base_fn $base_fn.md5

mkdir $base_fn

(cd $base_fn && unzip ../$input_fn > /dev/null)

md5sum $input_fn | cut -b 1-32 > $base_fn.md5

echo IFN $input_fn

echo BFN $base_fn

It is expected to be called from the $ROOT directory with the path to DFZ-file. It extracts the DFZ
file’s content into a corresponding sub directory and creates a file containing the MD5 hash.

Please note:
The path to the $ROOT directory is part of both scripts. Please insert the location of
the firmware source repository on your server into the scripts when deploying them:

The PHP scripts are available at:

https://datafox.de/download/musvc_firmware_update.zip

E.2: Using “query.php”

The script “query.php” offers information on the firmware versions available on the server. The pa-
rameters are expected to passed along with the GET request, the answer is URL encoded in the
style of system message.

E.2.1: Determining the latest firmware available

Check for the latest firmware version available on the server.

Request:

…/query.php?fw=latest

Response:

https://datafox.de/download/musvc_firmware_update.zip

Data protocol http and https communication page 96 Date: 30.04.2024

df_api=1&type=1&reason=3800&group=380&detail1=04.03.19.20.dfz

E.2.2: Determining the latest firmware from a release branch

Check for the latest firmware version on the server from a certain release branch.

Request:

…/query.php?fw=branch,04.03.19

Response:

df_api=1&type=1&reason=3800&group=380&detail1=04.03.19.20.dfz

Request:

…/query.php?fw=branch,04.03.16

Response:

df_api=1&type=1&reason=3800&group=380&detail1=04.03.16.06.dfz

E.2.3: Checking if a specific firmware version is available at the server

Check, if a specific firmware version is available.

Request:

…/query.php?fw=version,04.03.19.20

Response:

df_api=1&type=1&reason=3800&group=380&detail1=04.03.19.20.dfz

Request:

…/query.php?fw=version,04.03.19.21

Response:

df_api=1&type=2&reason=3802&group=380&detail1=no match

E.2.4: Listing all firmware files available on the server

List all firmware versions available on the serve.

Request:

…/query.php?fw=list

Response:

df_api=1&dfz=04.03.19.20.dfz&dfz=04.03.19.19.dfz&…&dfz=04.03.19.01.dfz&dfz=

04.03.18.08.dfz&dfz=04.03.16.06.dfz&…&dfz=04.03.09.20.dfz&dfz=04.02.05.60.d

fz

Data protocol http and https communication page 97 Date: 30.04.2024

E.3: Using “match.php”

The script “match.php” evaluates, if a specified firmware version is compatible with a certain device.
In addition to this, the script identifies the firmware file to be delivered to the device in order to apply
the update.

The relevant information for sending a request to “match.php” is provided by the device itself from
the “extinfo” command. This command (see 2.2.3.2.14) sends information on the device, its opera-
tional state, the main board as well as the built-in modules. In order to complete the query to
“match.php” you will have to add the firmware version as well as its MD5 fingerprint (shown on yel-
low background below)

The checksum is computed on the DFZ-File you are using to provide the update - “match.php”
compares you checksum to the version it has access to.

.../match.php?

kv=firmwareversion,04.03.20.03.Evo43&

kv=board,50007,4.4a&

kv=module,102026,1.0a,0.11&

kv=module,104003,1.0a,0.12&

kv=module,12,1.2a,1&

kv=module,35,1.3a,2&

kv=module,1,1.3j,6&

kv=module,11,1.6b,7&

kv=module,10,1.1c,8&

kv=module,106002,1.0a,8.1&

kv=module,106001,1.0a,8.2&

kv=module,106001,1.0a,8.3&

kv=module,106004,1.0a,8.4&

kv=module,19,1.3a,9&

kv=module,110004,1.0a,9.1&

kv=module,110101,1.0c,9.2&

kv=module,20,1.3a,18&

kv=device,11&

kv=serialnumber,1234&

kv=setup EVO 4.3 F1 Datensatz F2 SysMsg.aes,0AF95295&

kv=fw,04.03.20.03.dfz,8d3343de9a00cb36e7617e66ace126d8

The answer will either be an error message (if it contains …&type=2&…) or the name of the firm-
ware to be delivered from the DFZ container.

An error will be reported similar to

df_api=1&type=2&reason=3911&group=390&detail1=no acceptable compatibility

info

Information on a suitable firmware will be reported as:

Data protocol http and https communication page 98 Date: 30.04.2024

df_api=1&type=1&reason=3900&group=390&detail1=04.03.19.20.dfz&de-

tail2=evo_intera_II_04.03.19.20.iff

E.4: Delivering firmware content

Providing the firmware content is done by the OEM service application, which is the one maintaining
the connection to the device. In above diagram the blue arrow (2) shows a shortcut providing the
firmware where it is possible to send the firmware with the communication session initiated by the
device.

If you are planning to use a standard webserver for offering the firmware files, you may instruct the
device by using df_load_firmware to send a download request to a preconfigured firmware up-

date server. This server may then be a “normal” standard web server being optimized for content
delivery.

Data protocol http and https communication page 99 Date: 30.04.2024

Appendix F: Description of API-Level 0

!
Danger:
“Level 0” protocol only offers basic functions for controlling a device. It is available for
Hardware 3 devices in the described way.

If you plan to create an http interface for current (Hardware 4) devices, please implement
(parts of) “Level 1” (see 2.2) protocol

In this level generated client records are sent to the Web application. Through the response of Web
application actions can be performed.

Plaintext request

getdatagv.php?table=BB&bTYP=Manu&bLOG=Log&bDAT=2011-05-24_08:30:12&bPER=Per&checksum=2120

Plaintext Reply

status=ok&checksum=2120 (checksum of request) (always specify the end: \ r \ n (carriage return line feed))

F.1 Request

Request from the client (device) to the server.

F.1.1 Method: GET

Please note:
If you need a fixed parameter e.g. a client ID, which is sent with every request, then
you can set this in the URI of the system variables MOBILE.HTTPSEND.

Example: GET /path/to/script.php?clientid=1234&

Please pay attention to the trailing "&" and that the string of MOBILE.HTTPSEND
variable has a length limit of 63 characters.

Parameter name Meaning

table Name of record description used to generate the data from.

...
Between table and checksum are the fields of the record descrip-
tion. The parameter names are corresponding to the field names.

checksum
Checksum for the values of the different data field values. Refer to
the section "Parameter checksum".

F.2 Response

Response from the server to the client (device).

Content-Type: application/x-www-form-urlencoded; charset: iso-8859-1

Data protocol http and https communication page 100 Date: 30.04.2024

F.2.1 Required parameters details

Parameter name Meaning

status

Status of process.

OK

Signals that the processing was done successfully and
the next data set may be sent. In this case the check-
sum supplied with the server’s response has to be iden-
tical to the checksum received.
If status=ok and the correct checksum are sent, the de-
vice will send next record afterwards.

error The data needs to be retransmitted.

!

Danger:
Please make sure that there is no endless loop by con-
stantly sending status=error arises. The client sends
the same data record until it is acknowledged with OK
status.

checksum
Checksum for the values of the different data field values. Refer to
the section "Parameter checksum".

F.2.1.1 Parameter "checksum"

The checksum is an additional protection, which is to ensure data consistency of the sent field val-
ues between client and server. The data integrity itself is ensured by the checksums used by TCP /
IP. It's up to you whether you validate the checksum or simply in response to return the value deliv-
ered again.

The checksum calculation is done by adding up the individual character values of the values of GET
requests. The Keys will not get into the checksum!

Example: ... &field1=4711&field2=Kommt&... (keys in blue, values in red)
4711 = 52 + 55 + 49 + 49
Kommt = 75 + 111 + 109 + 109 + 116
By summation of the ANSI values of each character results in a checksum of 725.

Data protocol http and https communication page 101 Date: 30.04.2024

F.2.2 Optional parameters to include into the response

These parameters are optional, but may have dependencies among themselves. These dependen-
cies are represented by a separate block in the table.

Parameter name Meaning

time

The date and time that will be set by the device. The data and time
supplied will be applied by the device when deviating more than +/-
10 seconds from the device’s clock.
Format: YYYY-MM-dd_hh:mm:ss
Example: time = 2016-11-17_12:13:14

beep

Beep signal.
The table is a '+' used to represent a long tone and, - for a short
tone.

1 OK signal

2 ERROR signal

3 +

4 - +

5 - -

6 + +

7 - - -

8th + + +

9 - + -

10 + - +

11 SMS signal

F.2.2.1 Service mode

Parameter name Meaning

service

A value of 1 causes the client to enter the service mode after having
transmitted all data records.

Please note:
Standard HTTP behaviour is that a connection is closed
by the Web server. The client will switch to service
mode only when the web server closed the connection.

To end a connection, you can supply "Connection:
close" in the HTTP header of the server’s response.
This causes the web server to end the connection.

host

Optional and only to be specified when service was provided.
If the parameter is omitted, the value of the system variable

com.http_mode[n].host is used.

port Optional and only to be specified when service was provided.

Data protocol http and https communication page 102 Date: 30.04.2024

If the parameter is omitted, the value of the system variable

com.http_mode[n].port is used.

key

Optional and only to be specified when service was provided.
This parameter defines, if the service mode connection is

- Unencrypted (not key parameter set)
- Encrypted with the first active mode server’s key (key=key0)
- Encrypted with the second active mode server’s key (key=key1)

Please note:
This parameter requires at least firmware version
04.03.14.09.

F.2.2.2 Global variables

Parameter name Meaning

setup.1 Setting the value of a global variable by index 1-8.

setup.id Setting the value of a global variable by name.

F.2.2.3 Chain of events

Parameter name Meaning

ek Name of a chain of events, which is to be executed.

F.2.2.4 Message

Parameter name Meaning

message

Text message to be shown on the display. A line break can be
reached by specifying "\r" (0x0d).

Example: message = This \r is \r pure \ r Text.

!

Danger:
The message is only displayed if the setup option
“server online” is activated. This option is found on the
“default settings” page.

delay
Specifies the amount of time in seconds for which the message is
displayed.

size

Specifies the font size and style.

0 Standard font

Data protocol http and https communication page 103 Date: 30.04.2024

1 16 pixel (7 lines)

2 16 pixel, fixed width (7 lines)

3 19 pixel (6 lines)

4 19 pixel, fixed width (6 lines)

5 21 pixel (5 lines)

6 21 pixel, fixed width (5 lines)

The indicated pixel values and lines in the table are approximations
and may vary depending on the device used.

F.2.2.5 Online function of the access control (AC)

Parameter name Meaning

access, modules
The value of the string – see field "TM" from the "reader" list. The
value must therefore consist of exactly 3 digits always.

master

Id for the RS485 bus used for AC, describes the bus strand.
RS485 bus ID 1
RS485 bus ID 2 etc.
Specify either the properties “master” and “module” or alternatively
“access”.

mask

1/0 If the bit is set, the buzzer is activated.

2/1 If the bit is set, the green LED is activated.

4/2 If the bit is set, the red LED is activated.

8/3 If the bit is set, the 1st relay is addressed.

16/4 If the bit is set, the 2nd relay is addressed.

32/5 If the bit is set, the 3rd relay is addressed.

64/6 If the bit is set, the 4th relay is addressed.

128/7 If the bit is set, the 5th relay is addressed.

256/8 If the bit is set, the 6th relay is addressed.

..., Unused. Please set to 0.

type

0 Off

1 On

2
Toggle (on for 600ms, 600ms
off)

3 3 times turn on for 500ms

duration

[applies for type=1 only]: The duration, for that the mask is applied.
Interpretation:
- 0 = always on
- 1 - 40 = duration in seconds, for that the mask is active

Data protocol http and https communication page 104 Date: 30.04.2024

!
Danger:
Please follow the ordering "access -> mask -> type -> duration" or “master -> module
-> mask -> type -> duration” strictly.

F.2.3 Encoding

Please note:
When using HTTPS for device communication, the encoding described in this chap-
ter does not increase communication security.

We recommend not to use this mechanism when using HTTPS.

The data fields of the data set can be encrypted using a stream cipher RC4. The (encrypted) field
contents are transferred in their hexadecimal representation then.

Parameter name Meaning

dfcb

The parameter specifies that all these fields up to ‘dfce’ include en-
crypted field contents. The value of ‘dfcb’ contains the four-digit
(1000-9999) public key of the applicable password for the stream ci-
pher.

dfce
The parameter indicates that all of the following fields have no en-
crypted field contents anymore. If the value is decrypted correctly it
must match the value of ‘dfcb’.

F.2.3.1 Illustrate the GET request

In clear text (unencrypted) and encrypted:

Plaintext request

getdatagv.php?table=BB&bTYP=Manu&bLOG=Log&bDAT=2011-05-24_08:30:12&bPER=Per&checksum=2120

Plaintext Reply

status=ok&checksum=2120 (checksum)

Encrypted request

getdatagv.php?dfcb=1000&table=e977&bTYP=14dce883&bLOG=4d7876&…&checksum=c01de865&dfce=019c1bd2

encrypted response

dfcb=1000&status=2b97&checksum=1726950d&…&setup_2=a449fd9c&setup_blue=a9375c8d0672&dfce=b99239f3

F.2.3.2 Detection of encryption

To indicate whether the data fields are sent encryptedly, the start of the encrypted data is marked
using ,dfcb' (Datafox crypt begin), the end with ‘dfce’ (Datafox crypt end). ‘dfcb’ is the first field and
‘dfce’ the last field in the request.

The value of the field ‘dfcb’ itself is transmitted in plain text and is the public key. It is a random num-
ber between 1000 and 9999. The value must be used in conjunction with the “communication pass-
word” for the encryption and decryption.

Data protocol http and https communication page 105 Date: 30.04.2024

The encryption of data is thus effected by "private key + public key" as a password key.

In the response, the field ‘dfcb’ must be returned identically. This ensures that the decryption was
successful and that request and response also fit.

The value of the field ‘dfce’ is the same as ‘dfcb’ – however it has to be encrypted. While decoding
can thus be ensured, if the key used is correct. The value of ‘dfce’ therefore must be identical to
‘dfcb’ after decryption.

If there are problems during deciphering you must include ‘dfc=error’ in the response. In addition,
the fields ‘dfcb’ and ‘dfce’ have to be populate with information as follows:

The following errors are to be observed by the evaluating script:

‘dfcb’ is not a number or is outside of its value limit of 1000 - 9999

• Answer: dfc=error&dfcb=range&dfce=unknown/missing
o Range describes a range error – the value is outside its limits.
o Unknown describes an unchecked condition.
o Missing identifies a missing field in the request.

‘dfcb’ without final ‘dfce’

• Answer: dfc=error&dfcb=1000&dfce=missing

‘dfce’ is not a number or is outside of its value limit of 1000 - 9999

• Answer: dfc=error&dfcb=1000&dfce=range

‘dfce’ without incipient ‘dfcb’

• Answer: dfc=error&dfcb=missing&dfce=unknown

‘dfce’ is not equal ‘dfcb’

• Answer: dfc=error&dfcb=1000&dfce=different
o ‘dfce’ (after decoding) is not equal to ‘dfcb’.

F.2.3.3 Response of the web server

The field contents from the request are sequentially decrypted using the RC4 stream cipher. The
field contents of the reply is to be seen as part of the entire data stream and thus encrypted using
the same RC4 stream cipher instance used for the decryption. The only exception is the first field
value ‘dfcb’, that is identical to the one supplied by the request.
The last encrypted field of the reply has to be the ‘dfce’ field. The value of ‘dfce’ must be (after de-
cryption) equal to the value of ‘dfcb’.

Please note:
Please ensure that the parameter values are processed in the order they are passed in
request and response. The RC4 cipher realizes an internal state preventing processing
data out of order.

Data protocol http and https communication page 106 Date: 30.04.2024

Appendix G: Distribution Update through the Access bus (Routing)
The following section is taken from the software booklet accompanying firmware version 04.03.21. It
describes how updates are distributed in the access bus - both with Datafox Studio, the communica-
tion library DFCom and via HTTP(S).

G.1 Distribution of Update using the access control bus

If you want to update a device that is connected to
the access bus, it is necessary to transmit the new
firmware to the access controller that can be
reached via the main communication (e.g. LAN).
This controller then takes over the transfer to the
target devices connected to the access bus.

In the past, we provided so-called "UPD" files for
this purpose. We have revised this concept and
now support the devices "in the bus" with the
usual DFZ firmware file. The information about
which devices are to be updated is added as rout-
ing information during the firmware update.

The implementation in the DFCom library uses the
new function DFCWriteFile() (see df_files.h) for
this purpose. In the HTTP context, the routing
data is transmitted as HTTP header "df-routing:".

G.2 Update of access control devices
using the Datafox Studio

The update manager in Datafox Studio
has been extended with the current ver-
sion 04.03.21.06 so that firmware can
also be distributed via the access bus.

Please first select the firmware version
to be transferred for the bus device that
is to receive the update in the upper
area of the update manager (here

04.03.21.02.dfz). Then select the action "Perform reader update
now" from the context menu of the higher-level access controller in
the update manager.

In the dialogue that now appears, select the type of device(s) to be
updated. You can roll out the update to all accessible devices of the
type or limit it to individual devices.

Pressing the "Ok" button starts the update process. The progress is
monitored by Datafox Studio and displayed in the Update Manager:

https://www.datafox.de/files/dfcom/html_de/df__files_8h.html

Data protocol http and https communication page 107 Date: 30.04.2024

After successful transfer and execution of the update, a corresponding message is displayed in the
action column.

You can check the firmware versions used in the system via the "Extras -> Read status messages
from the access control" dialogue.

G.3 Creating routing information when implementing firmware update yourself

Unless you use Datafox Studio to update devices in the access bus, this chapter provides infor-
mation on implementation details of routing, i.e. the accessibility of the individual devices within the
system.

G.3.1 Logical structure of routing information

Routing information consists of one or more paths through a Datafox system. This essentially re-
quires specifying whether a node is to process or forward the data and how the node is to be
reached (from the predecessor node).

An example is shown on the right. The KYO Oneloc (SN 3000) highlighted there can be reached
from the PC (notebook) via the EVO 4.3 (SN 1234) connected to the network in access bus 2 at ad-
dress 7.

Three EVO Intera II readers are also highlighted, the two readers with serial numbers 1004 and
1011 are connected to access bus 1 of the EVO 4.3, the EVO Intera II reader (SN 1009) is con-
nected as a detached reader to the KYO Inloc (SN 5558).

Routing is done on a logical level, i.e. no knowledge of bus addresses and buses is required. Only
knowledge of the devices involved on the way to the target device and their device types is required

Data protocol http and https communication page 108 Date: 30.04.2024

(cf. G.5 Assignment of device types). The devices are on the same logical level on a bus. If the
reader is detached or not does not affect the routing rule.

From the PC, the KYO Oneloc is connected to the EVO 4.3. The rule requires device types and se-
rial numbers to describe the path through the system. Thus, the KYO Oneloc can be reached by the
routing rule

 PC -> 11.1234 -> 20.3000

Please note:
If you want to update a directly accessible device, you do not need any routing
information. Simply transfer the update directly to this device as usual, without
routing information.

G.3.2 Options

To address a specific subgroup of devices, such as the EVO Intera II devices highlighted in red in
the picture above, the specific devices are addresses via device type and serial number.

PC -> 11.1234 -> 34.1004
PC -> 11.1234 -> 34.1011
PC -> 11.1234 -> 34.1009

If you do not want to limit a routing rule to a specific serial number, but want to use all devices of the
type, you can express this with an asterisk (*) instead of the serial number. In order to address all
KYO Oneloc highlighted in yellow, the following routing rule can be used.

Related to the above example, the following rules are equivalent:

PC -> 11.1234 -> 20.*

G.1.2.3 Concrete, complete routing rules

A routing information (RI) can contain several routing rules (RR), these are separated by semicolons
(;). A routing rule corresponds to a path through the system to a target device.

A path begins with an identifier about the possible feedback (N for no feedback expected, A for re-
sponse expected), followed by the list of devices that specify the path through the system. Option-
ally, the definition of the receiver can still be made, which is appended to the last device in square
brackets.

Underlying grammar:
RI -> (<RR> <APPL>? <Semicolon>)+
RR -> <AN> (<SPC> <Level> <Comma> <Addr> <Comma> <Mode>)+
AN -> A | N
Level -> 0 | 1
Addr -> <Number „DevTypeId“> <Dot> <Number „Serial Number“> | *
APPL -> [<Addr>]
Mode -> S | E
Number-> 0 | [1-9][0-9]*
Semicolon -> ;
SPC -> _ (Blank)
Comma -> ,
Dot -> .

Data protocol http and https communication page 109 Date: 30.04.2024

Level describes the degree of support of routing rules by the component. Datafox devices (with
firmware from 04.03.21) have a "1" here, any other devices are described here with "0". The value is
designed for possible future extensions to the routing.

The address (Addr) designates a Datafox device and is specified as device type <dot> serial num-
ber. The serial number can also be specified as "*" - in this case, the rule applies to all devices
match the specified device type.

Mode indicates what is to happen to the transmitted data. Here, "S" for self-application and "E" for
forwarding to a following node are possible.

If a controller applies a firmware update itself, this is associated with a restart of the device. For-
warding within the same rule is therefore not possible.

The update rules described above thus become complete as
N 1,11.1234,E 1,34.1004,S;N 1,11.1234,E 1,34.1011,S;N 1,11.1234,E 1,15.5558,E 1,34.1009,S; (1)

respectively
N 1,11.1234,S[34.*];N 1,11.1234,E 1,15.5558,E 1,34.1009,S; (3)

or
N 1,11.1234,S[34.*];N 1,11.1234,E 1,15.5558,E 1,34.1009,S; (3)

specified.

Please note:
Addressing with "[]" in rule (3) leads to the evaluation of whether the firmware
update is compatible being carried out by the previous device. If devices with
different CPUs are connected in the access bus, this means that the update is
not transmitted to a device with a CPU that is not compatible with the update -
you save transmission bandwidth and time in the access bus.

If modelling according to (1) or (2) is selected, the firmware is first transferred to
the target device and only there checked for compatibility.

G.4 Determining access control bus participants in a live system

This section describes how to determine the devices attached to an access control bus program-
matically.

G.4.1 Structure of system variable „access.readerinfo“

The system variable "access.readerinfo" contains information about participants on the access
buses of an access controller. This variable is provided by the controller and can therefore only be
read, not written.
The data is coded in INI format:

[global]

busses=4

bus_active=0,1,2

[bus_0]

readers=010,020

[bus_1]

readers=010,011,020

[bus_2]

readers=010,020

[reader_0_010]

state=0

readerId=110

[reader_0_020]

state=0

readerId=120

cpu=49004

type=34

serial=3102

vendor="datafox"

version="04.03.21.03"

[reader_1_010]

state=0

readerId=210

type=20

serial=1108

vendor="datafox"

version="04.03.21.03"

[reader_1_020]

state=0

readerId=220

type=24

serial=1115

vendor="datafox"

version="04.03.15.18"

[reader_2_010]

state=0

readerId=310

type=24

serial=321

vendor="datafox"

version="04.03.15.18"

Data protocol http and https communication page 110 Date: 30.04.2024

vendor="phg"

version="3C02"

[reader_1_011]

state=0

readerId=211

cpu=49004

type=34

serial=0

vendor="datafox"

version="04.03.21.02"

[reader_2_020]

state=0

readerId=320

cpu=49004

type=34

serial=1013

vendor="datafox"

version="04.03.21.03"

The content of the variables is divided into three different section types:

G.4.2 Section [global]

In the [global] section, the key "busses" is stored; it specifies the number of possible buses as a nu-
merical value and is required for finding the readers.
In addition, the key “bus_active” is provided, in which the bus numbers - separated by commas and
starting with 0 - are enumerated.

G.4 3 Section [bus_<idx>]

The section [bus...] describes a bus. Here <idx> is replaced by the bus number, starting with 0. The
[bus...] section contains the key "readers". This indicates which readers are present in this bus. A 3-
digit number is always used (format like TM). If there are several readers in the bus, the values are
separated by a comma.

G.4.4 Section [reader_<busId>_<readerId>]

In the [reader...] section, the individual values for a reader are now stored. In the section, <busId> is
replaced by the number of the bus (o ... n) and <readerId> by the 3-digit numerical value of the
reader.

The following keys are stored in the section:

Key Value Example Description

state Number 7 Current status of the access control module
0 = module detected and working
3 = module not present in list, nonetheless
found in the bus.
4 = module present in list, not found in bus.
5 = module uses different communication key.
6 = module requires a login password.
7 = RFID reader type different from setup
(Mifare, Legic, Unique, etc.)
8 = Error while configuring the RFID reader.

readerId Number 1 Id of reader from the reader list
vendor Text „datafox“ Manufacturer code of the module
cpu Number 49004 ID of the CPU used by the module. If the CPU

is not detectable, this value is omitted.
type Number 34 Numeric device type
serial Number 1001 Device serial number
version Text „04.03.20.11“ Current firmware version

G.4.5 Locating the [reader] sections

To find the [reader...] sections, the number of buses is first read from the global section.

Then the bus sections are searched for all possible bus numbers, starting with 0. If no bus section
for a specific number can be found, no reader is available in this bus.

Data protocol http and https communication page 111 Date: 30.04.2024

The connected readers can now be read out in the sections of the buses. Together with the bus in-
dex and the participant number in the bus, the section of the reader can now be searched for.

G.5 Assignment of device types

The table lists the devices currently available through Datafox and the respective device type identi-
fier.

Device Type ID of Device Type

AE-MasterIV 5

Dockingstation V2 18

EVO 2.8 Pure 10

EVO 3.5 Pure 23

EVO 3.5 Universal 21

EVO 4.3 11

EVO 4.6 Flexkey 35

EVO 5.0 Pure 36

EVO Agera 24

EVO Intera II 34

Fahrzeugdatenlogger V2 19

IPC Embedded-System/Q7 14

IO-Box V4 15

KYO Cenloc 25

KYO Fourloc 37

KYO Inloc 16

KYO Oneloc 20

Mobil-Box V4 17

PZE-MasterIV 0

Please note:
An update by means of an IFF file can only be carried out if the reader is reported with
status 0.
Furthermore, the device must be of the Datafox type and the key cpu must be present.

Data protocol http and https communication page 112 Date: 30.04.2024

Appendix T: Troubleshooting

This chapter collects aspects that have been encountered by Datafox during different deploy scenar-
ios. Even if these scenarios don’t exactly fit a problem, you are currently observing, please consider
through the chapter as ideas for your investigation.

T.1: Problems with specific web servers

We observed that not all web servers do implement the requirements of RFC 2616 correctly. We use
the system variable http.flags to adopt the client’s behaviour to these idiosyncrasies.

T.1.1: Port inside the Host-Header of the http request

RFC 2616 (http/1.1) defines the host header inside the http header as

Host = "Host" ":" host [":" port]

However, we observed web servers that will reject a request having the port contained inside the host
header (some servers even crashed). On the other hand there are reverse proxies that require the
port inside the host header to determine the correct internal host to establish the connection to.

Should your webserver require to not get the port inside the host header. Please set bit 0 of the
device’s http.flags.

!

Attention:
A server not capable of handling requests containing Host header and ports may occur
at different stages, especially with cloud solutions currently.

We observed at least one cloud solution that allowed https communication and replied
an HTTP 502 Bad Gateway due to a port contained in the Host header. Since the SSL
communication was correctly established at this point of time, the response must have
come from a server dispatching the request to the correct host, due to the port contained
inside the HOST header.

T.1.2: Proxy server/load balancer and service mode (Connection: Close)

If the device is required to establish a service mode connection (see service (F.2.2.1 Service mode)

or df_service (2.2.3.2.3)), it requires the server to close the pending http connection. This may be

done explicitly by the server or due to a timeout. An intentional close of the connection is indicated by
the server through the header files “Connection: close”.

Should there now be a proxy server (or a load balancer) between client and server, this proxy will
intercept the “Connection: close” and close the connection to the server – however the connec-

tion to the client is kept. Thus, the device cannot establish a service mode connection.

You may have the device close its connection itself when receiving a service mode request by setting
bit 1 in the http.flags.

T.1.3: Requests with absoluteURI or abs_path adressing

RFC 2616 (http/1.1) defines in section 5.1.2 that the http request URI may be one of the following:

Request-URI = "*" | absoluteURI | abs_path | authority

Data protocol http and https communication page 113 Date: 30.04.2024

The first line of a http request with absoluteURI-addressing looks as following:

GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1

An abs_path-encoded request’s first line will not contain protocol, host and port – they will follow in

a host-header:

GET /pub/WWW/TheProject.html HTTP/1.1

Host: www.w3.org

Datafox devices with firmware newer than 04.03.18.03 create abs_path requests, provided they are

not interfacing with a proxy server (com.http_mode[.}.proxy) or when this is explicitly required

by setting bit 5 of the http.flags.

T.1.4: Example: Applying the correct http.flags

As mentioned before, http.flags are a bitfield – which is represented by a decimal number in the

device. Should your installation require abs_path addressing and have a problem with the port inside

the host header, you will have to set bits 0 and 2 simultaneously.

For this set http.flags to 5 = 20 + 22.

T.2: HTTPS connetion to an AWS / CloudFront service

Amazon CloudFront requires the SNI hostname to be set correctly, otherwise the HTTPS handshake
will terminate with alert 40. The SNI hostname is identical to the name of your AWS instance.

Please enter the AWS instances Hostname into the com.http_mode[.].tls.sni_host variable

inside the device communication settings.

T.3: My device reports SSL-Write -9984 error – although I installed the server’s
certificate correctly at the device.

According to the TLS specification the server shall transfer the entire chain of certificates excluding
the root certificate. The client can then test the chain against the trustworthy certificates stored di-
rectly on it.

We have observed servers that do not transmit the entire chain. In this case you will have to deploy
intermediate certificates as well to the client.

Consider the certificate chain of “datafox.de” website. The root certificate originates as “GlobalSign
Root CA”, “AlphaSSL CA – SHA256 – C2” is derived from it, which then is used to create “*.data-
fox.de”.

Data protocol http and https communication page 114 Date: 30.04.2024

You may have to export, convert and deploy the entire chain according the description in Appendix
B.

T.4: Virtual Hosts and HTTPS (e.g., Microsoft IIS)

Using the HTTP protocol resolving of virtual hosts (to enable running more than one logical server
on a physical server hardware) is typically done using the HOST header field from the HTTP re-
quest.

When establishing a connection using HTTPS the request’s header fields are not available during
the SSL handshake – and additional problem is that different virtual server instances may have dif-
ferent certificates.

If you are using an installation with virtual hosts, please set the SNI hostname along with the net-
working configuration. According to our knowledge at least the Microsoft IIS then will be able to pro-
vide the correct certificate during the SSL handshake.

T.5: Reference to http.flags

Using http flags, the following adjustments to data processing may be done:

Bit /
Value

Name Description

1 / 1
Host-Header without
Port

If set, the host header is sent without the port information
(see E.1.1)

2 / 2 Close for service
If set, the device actively closes a connection if a request
for service has been received by the device (see E.1.2)

3 / 4
Using abs_path re-
quests

If set, the device creates abs_path instread of abso-
luteURI requests (see E.1.3)

!

Attention:

This Flag has been obsoleted as of version
04.03.18.03. The decision abs_path / abso-
luteURI is based on the definition of a proxy
server:

- If a proxy server is present, absoluteURI
is used.

Data protocol http and https communication page 115 Date: 30.04.2024

- If no proxy server is configured, abs_path
is used.

4 / 8 Exclude static headers

If set, the device will only create Host:- and Content-

Length:-headers. Every other header will have to origi-

nate from “header.extensions” (see 1.7) or will not be
sent.

5 / 16 Force absoluteURI
(04.03.18.03 an up): If this flag is set, absoluteURI is used
independently of a proxy server being present always.

6 / 32 TCP Proxy

(04.03.21.21 / 04.03.22.03 and newer): Proxy mode

0: The device establishes an http or https connection to
the proxy server and informs this on the connection target
through the http(s) request.

1: The Proxy server is addressed using http protocol (ig-
noring the “http.mode” setting). The device sends a CON-
NECT-Request to establish an explicit connection to the
target host. Communication to the target host is using
http or https, depending on the “com.http” device setting.

T.6: Basic Authentication not working

We have observed cases of non-working basic authentication together with cellular radio in combina-
tion with M2M SIM cards. The root cause of failure was that the provides disconnects each TCP/IP
connection directly after delivering the data package.

In this scenario it is not possible to determine the BA realm: The device associates the realm to the
connection for its duration – for security reasons. When receiving the realm along with the “http-401
– unauthorized” message, the realm is being discarded when the connection is terminated by the
provider – with the next connection attempt another http-401 is generated by the server, since the
device does not know the authentication realm anymore and cannot provide the required credentials.

T.7: Different certificates/certificate chains on the same web server

Currently, we support RSA certificates with up to 2048 bit key length with the device firmware. This
restriction applies to all certificates in the certificate chain.

The usability of certificate chains with longer keys depends largely on the communication type and
device equipment of the device - therefore this is not generally guaranteed.

Virtual hosts offer a possibility to specifically use different certificates on a web server - and thus also
certificates of different lengths. You can specify the use of a special virtual host via the SNI_HOST if
it is not present in the DNS, and thus create a dedicated endpoint on your web server that uses a
certificate chain with 2048 bits.

T.8: Free Memory during TLS communication

Datafox device log free memory every 12 hours – this statistic is created at midnight and at noon.

Data protocol http and https communication page 116 Date: 30.04.2024

The line containing „HEAP“ shows, that

• An amount of 141544 bytes is available (TOTAL)

• From this amount, 106904 bytes are in use currently (USED)

• As consequence 34640 byte are currently available (FREE)

• During the device operation at least 26772 bytes have been available (MIN) and

• The memory allocation failed 0 times (NULL).

Please ensure that at least 16 kBytes of memory are available as MIN during HTTPS communica-
tion.

Please note:
Please keep in mind that the memory allocation takes place during HTTPS communi-
cation. As soon as you connect a USB cable the device changes its communication
method – the FREE and USED values do not match the HTTPS communication sce-
nario.

T.9: Runtime considerations on HTTPS communication

The TLS handshake required for HTTPS communication to securely negotiate the communication
key is costly - both in terms of computing time and in terms of the data exchanged between server
and device.
It is quite possible that 4-5 seconds are required for the handshake and about 1.5 kB of data must
be exchanged in this context. The actual data record then transferred normally requires less than
1/3 of this amount of data.

T.9.1: Closing the connection from the server side

Typically, it is not necessary to negotiate a new connection for each exchanged data record. How-
ever, this becomes necessary if the device or the server actively closes the communication connec-
tion after each data exchange, for example by adding "Connection: Close" in the HTTP header or by
actively closing the TCP network socket.
We therefore recommend explicitly closing the connection only when establishing a maintenance
connection (service mode, cf. 2.2.3.2.3).

T.9.2: Cloud services

Even with "cloud services", where connections are even scarcer than with "on premise" services,
the unconditional closing of an HTTPS connection should be reconsidered. If a device has more
than one record to transmit, it will immediately initiate the next connection - and thus occupy another
connection. This results in more CPU load on both sides with ultimately equal use of connections.
Allowing the device to reuse the existing connection by means of a short timeout (3-5 seconds) will
result in both: connections being released quickly and less server load.

T.9.3: Support from the device

Since firmware release 04.03.21.12, the device transmits along with the HTTP header how many data
records are still available for transmission. Based on this information (and the knowledge of which
messages you still expect from the device due to current actions), you can decide whether it makes
sense for the server to close the connection.

	1. Introduction
	1.1. Explanation of terms used in the document
	1.2. Formatting
	1.3. Basic Scheme
	1.4. Feedback - records
	1.5. API - Level
	1.6. Basic Authentication
	1.7. Example of a http request using POST method
	1.7.1. Request
	1.7.2. Response

	1.8. Basic configuration of a device for HTTP(S) communication

	2. Description to the respective API - Level
	2.1. Level 0
	2.2. Level 1
	2.2.1. Request types in API-Level 1
	2.2.1.1. Anatomy of a typical API-Level 1 request
	2.2.1.2. Anatomy of a typical API-Level 1 response
	2.2.1.3. Transfer of image data and long barcodes (since 04.03.18.04)

	2.2.2. Request
	2.2.2.1. Method: GET

	2.2.3. Response
	2.2.3.1. Required parameters details
	2.2.3.1.1. Acknowledging records

	2.2.3.2. Optional parameter details
	2.2.3.2.1. Setting the device clock (df_time)
	2.2.3.2.2. Emitting a beep sound at the device (df_beep)
	2.2.3.2.3. Service mode (df_service)
	2.2.3.2.4. Global, setup- or system variables (df_var)
	2.2.3.2.5. Chain of events (df_ek)
	2.2.3.2.6. Show message on display (df_msg)
	2.2.3.2.7. Select the icon for displaying a message (df_msg_icon)
	2.2.3.2.8. Define a backlight (df_backlight)
	2.2.3.2.9. Setting the background message (df_info_msg)
	2.2.3.2.10. Online function of the access control (df_ac2)
	2.2.3.2.11. Sending a custom message to an access control device (df_custom_msg_ac2) [in preparation]
	2.2.3.2.12. Pre-checked online access control (df_ao_ac2)
	2.2.3.2.13. Trigger access control event by server (df_trigger_ac2)
	2.2.3.2.14. Fetch key-value pair from the device (df_kvp)
	2.2.3.2.15. Set or reset a non-access control relay (df_set_relay)
	2.2.3.2.16. Toggle a non-access control relay (df_toggle_relay)
	2.2.3.2.17. Load a file from server to the device (df_load_file)
	2.2.3.2.18. Transfer data from a device to the server (df_send_file)
	2.2.3.2.19. Remove a file stored on the device (df_remove_file)
	2.2.3.2.20. Delete fingerprint data from the device (df_remove_finger)
	2.2.3.2.21. Update of list data (df_setup_list or df_ac2_list)
	2.2.3.2.22. Count number of records within a table (df_table_count)
	2.2.3.2.23. Select a row from a table (df_table_select)
	2.2.3.2.24. Append data to a table (df_table_append)
	2.2.3.2.25. Update a table (df_table_update)
	2.2.3.2.26. Delete data from a table (df_table_delete)
	2.2.3.2.27. Firmware Update using https (df_load_firmware)

	2.3. Feedback through System Messages
	2.3.1. System messages to the list data download (feedback - records)
	2.3.2. Associating command and system messages

	2.4. Encryption
	2.4.1. Illustrate the GET request
	2.4.2. Detection of encryption
	2.4.3. Response from the web server
	2.4.4. Buffer sizes

	Appendix A: Mapping of Communcation Libarary and Datafox Studio to HTTP Level 1
	A.1: Comparison of communication library and HTTP Level 1
	A.2: Comparison of Datafox Studio and http Level 1
	A.3: Structure of a transfer file
	A.3.1: Forms and Chunks contained in the transfer file
	A.3.1.1: Version information [Chunk „DFFV“]
	A.3.1.2: Description of the file’s content [FORM „DESC“]
	A.3.1.2.1: Hierarchy tag for the description [Chunk „HIER“]
	A.3.1.2.1: Description text [Chunk „HTML“]
	A.3.1.3: File content [FORM „DFF0“]
	A.3.1.3.1: Type of data [CHUNK „FTYP“]
	A.3.1.3.2: Auxiliary parameters [CHUNK „FAUX“]
	A.3.1.3.3: File name [CHUNK „FNAM“]
	A.3.1.3.4: Encoding-Informationen des Datenblocks [CHUNK „ENC “]
	A.3.1.3.5: Compatibility information [CHUNK „COMP“]
	A.3.1.3.6: Datei-Inhalt [CHUNK „DATA“]
	A.3.1.3.7: Encrypted data chunk (replaces DATA chunk, if used) [CHUNK „DATE“]
	A.3.1.3.8: Signature-Chunk [CHUNK „SIGN“]
	A.3.1.3.9: Signed data chunk [CHUNK „DATS“]
	A.3.1.4: Record / List data description [FORM „DFDS“]
	A.3.1.4.1: Data record name [„DNAM“]
	A.3.1.4.2: Index of the data record with the setup [„DIDX“]
	A.3.1.4.3: index of the priority field [„DPRI“]
	A.3.1.4.4: Index of the key field [„DKEY“]
	A.3.1.5: Information on columns of lists or data records [FORM „DCOL“]
	A.3.1.5.1: Column content information chunk [„CINF“]
	A.3.1.5.2: Column name chunk [„CNAM“]
	A.3.2: File types

	Appendix B: HTTPS Communication
	B.1: Elements of the https infrastructure
	B.2: Establishing the connection
	B.3: Validation of the server certificate
	B.4: Communication
	B.5: Using a self-signed (server-) certificate
	B.5.1: Device configuration – Deploying a server certificate
	B.5.2: Which certificate is used by the web server? (“old” Edge Browser)
	B.5.3: Which certificate is used by the web server? (“Chromium” Edge Browser)
	B.5.4: Device configuration – Deploying a client certificate

	B.6: Creating a private CA
	B.6.1: Creating the root key/certificate of the CA
	B.6.2: Create derived key pairs

	B.7: Analysis of certificates
	B.8: Limitations of the Implementation
	B.9: Additional Information

	Appendix C: Initial device configuration using http
	C.1: Sending info telegrams with configuration data cyclically
	C.2: CRC Implementation of the info telegram
	C.3: Use Case: Monitoring and Updating device certificates

	Appendix D: Test server application with http integration
	D.1: The User interface
	D.2: Webserver configuration
	D.2.1: Server
	D.2.2: User Interface (UI)
	D.2.3: Behaviour
	D.2.4: Directories

	D.3: Processing of requests
	D.4: IFF files inside the web server
	D.4.1: Analysis of IFF files
	D.4.2: Creating an IFF file

	D.5: Working and updating server certificates
	D.6: Firmware-Update using the web server

	Appendix E: Firmware Update using HTTP(S)
	E.1: Prerequisites for using “query.php” and/or “match.php”
	E.1.1: Sample script for deploying a firmware version at a server

	E.2: Using “query.php”
	E.2.1: Determining the latest firmware available
	E.2.2: Determining the latest firmware from a release branch
	E.2.3: Checking if a specific firmware version is available at the server
	E.2.4: Listing all firmware files available on the server

	E.3: Using “match.php”
	E.4: Delivering firmware content

	Appendix F: Description of API-Level 0
	F.1 Request
	F.1.1 Method: GET

	F.2 Response
	F.2.1 Required parameters details
	F.2.1.1 Parameter "checksum"

	F.2.2 Optional parameters to include into the response
	F.2.2.1 Service mode
	F.2.2.2 Global variables
	F.2.2.3 Chain of events
	F.2.2.4 Message
	F.2.2.5 Online function of the access control (AC)

	F.2.3 Encoding
	F.2.3.1 Illustrate the GET request
	F.2.3.2 Detection of encryption
	F.2.3.3 Response of the web server

	Appendix G: Distribution Update through the Access bus (Routing)
	G.1 Distribution of Update using the access control bus
	G.2 Update of access control devices using the Datafox Studio
	G.3 Creating routing information when implementing firmware update yourself
	G.3.1 Logical structure of routing information
	G.3.2 Options
	G.1.2.3 Concrete, complete routing rules

	G.4 Determining access control bus participants in a live system
	G.4.1 Structure of system variable „access.readerinfo“
	G.4.2 Section [global]
	G.4 3 Section [bus_<idx>]
	G.4.4 Section [reader_<busId>_<readerId>]
	G.4.5 Locating the [reader] sections

	G.5 Assignment of device types

	Appendix T: Troubleshooting
	T.1: Problems with specific web servers
	T.1.1: Port inside the Host-Header of the http request
	T.1.2: Proxy server/load balancer and service mode (Connection: Close)
	T.1.3: Requests with absoluteURI or abs_path adressing
	T.1.4: Example: Applying the correct http.flags

	T.2: HTTPS connetion to an AWS / CloudFront service
	T.3: My device reports SSL-Write -9984 error – although I installed the server’s certificate correctly at the device.
	T.4: Virtual Hosts and HTTPS (e.g., Microsoft IIS)
	T.5: Reference to http.flags
	T.6: Basic Authentication not working
	T.7: Different certificates/certificate chains on the same web server
	T.8: Free Memory during TLS communication
	T.9: Runtime considerations on HTTPS communication
	T.9.1: Closing the connection from the server side
	T.9.2: Cloud services
	T.9.3: Support from the device

